-
Notifications
You must be signed in to change notification settings - Fork 16
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
mrcal.sorted_eig() now broadcasts properly
- Loading branch information
Showing
4 changed files
with
184 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,173 @@ | ||
#!/usr/bin/env python3 | ||
|
||
r'''Tests mrcal.sorted_eig | ||
This has complex logic to support broadcasting, and I validate it here | ||
''' | ||
|
||
import sys | ||
import numpy as np | ||
import numpysane as nps | ||
import os | ||
|
||
testdir = os.path.dirname(os.path.realpath(__file__)) | ||
|
||
# I import the LOCAL mrcal since that's what I'm testing | ||
sys.path[:0] = f"{testdir}/..", | ||
import mrcal | ||
import testutils | ||
|
||
|
||
# Reference data generated like this: | ||
# l_ref = np.random.random((4,5,3)) | ||
# v_ref = np.random.random((4,5,3,3)) | ||
# v_ref /= nps.dummy(nps.mag(v_ref), -1) | ||
l_ref = np.array( | ||
[[[0.67155361, 0.3739189 , 0.95940538], | ||
[0.14668176, 0.07336839, 0.86729039], | ||
[0.75139476, 0.44131877, 0.65641997], | ||
[0.08619787, 0.00514196, 0.46842911], | ||
[0.10580845, 0.32199031, 0.3735915 ]], | ||
[[0.05508103, 0.48401787, 0.46611417], | ||
[0.9483949 , 0.87735674, 0.45872956], | ||
[0.17057072, 0.47791177, 0.19352408], | ||
[0.13524878, 0.48731269, 0.42794007], | ||
[0.26253366, 0.55161897, 0.95356585]], | ||
[[0.70013654, 0.15301631, 0.66004348], | ||
[0.77747137, 0.48248562, 0.59674648], | ||
[0.67373556, 0.42192842, 0.50667046], | ||
[0.55300486, 0.99944748, 0.94900917], | ||
[0.23368724, 0.88016081, 0.95223845]], | ||
[[0.00710551, 0.59964954, 0.07766728], | ||
[0.3990046 , 0.11612546, 0.9119466 ], | ||
[0.58064238, 0.2557102 , 0.37509017], | ||
[0.8777226 , 0.49047888, 0.93402964], | ||
[0.69596428, 0.53620116, 0.17331565]]]) | ||
v_ref = np.array( | ||
[[[[0.25492998, 0.96651093, 0.0294505 ], | ||
[0.60080772, 0.41212806, 0.68496755], | ||
[0.73501109, 0.48565382, 0.47317974]], | ||
[[0.70813727, 0.03220643, 0.70533988], | ||
[0.93102532, 0.36255803, 0.04175557], | ||
[0.20480975, 0.40688981, 0.89022112]], | ||
[[0.7224457 , 0.24393336, 0.64696888], | ||
[0.35658574, 0.13414791, 0.9245815 ], | ||
[0.13909208, 0.60359174, 0.78506714]], | ||
[[0.75648707, 0.27895008, 0.59153543], | ||
[0.72671999, 0.43434694, 0.53218492], | ||
[0.65150949, 0.75369119, 0.08651575]], | ||
[[0.97809611, 0.20788551, 0.0105651 ], | ||
[0.54238903, 0.47683243, 0.69169717], | ||
[0.49810472, 0.82565147, 0.2649365 ]]], | ||
[[[0.61093683, 0.14117182, 0.77899083], | ||
[0.6181547 , 0.77847647, 0.10889971], | ||
[0.08704351, 0.1252583 , 0.98829843]], | ||
[[0.60466605, 0.73939429, 0.29609974], | ||
[0.16013313, 0.70419195, 0.69171604], | ||
[0.99552064, 0.07759479, 0.05401577]], | ||
[[0.82056474, 0.21231952, 0.53065425], | ||
[0.76537934, 0.56808399, 0.30244843], | ||
[0.946437 , 0.31493105, 0.07124214]], | ||
[[0.74296313, 0.65833599, 0.12082848], | ||
[0.55311763, 0.48774553, 0.67540002], | ||
[0.04022766, 0.231213 , 0.97207113]], | ||
[[0.74732957, 0.55426305, 0.36645734], | ||
[0.46692915, 0.62976623, 0.62078311], | ||
[0.33625853, 0.81507223, 0.47179175]]], | ||
[[[0.72795853, 0.68050259, 0.08362175], | ||
[0.69587492, 0.06301186, 0.71539332], | ||
[0.61449548, 0.78748595, 0.04755187]], | ||
[[0.0804386 , 0.97052257, 0.22719061], | ||
[0.68761638, 0.29892877, 0.66168369], | ||
[0.11544557, 0.60308161, 0.78928125]], | ||
[[0.70195868, 0.03183947, 0.71150563], | ||
[0.64728709, 0.59533928, 0.4760153 ], | ||
[0.7341157 , 0.52967069, 0.4248801 ]], | ||
[[0.87429733, 0.33296173, 0.35318645], | ||
[0.96062012, 0.27237033, 0.05498541], | ||
[0.50479801, 0.86215336, 0.04324986]], | ||
[[0.83840394, 0.5022181 , 0.21179193], | ||
[0.16494462, 0.94329994, 0.28805987], | ||
[0.09539021, 0.97808363, 0.18507601]]], | ||
[[[0.98847591, 0.1197682 , 0.09257946], | ||
[0.88339796, 0.34700512, 0.31495315], | ||
[0.36753448, 0.75206847, 0.54709362]], | ||
[[0.47027684, 0.63504071, 0.61283194], | ||
[0.92883661, 0.15765952, 0.33527009], | ||
[0.83514385, 0.04180379, 0.5484407 ]], | ||
[[0.85047215, 0.29296156, 0.43688746], | ||
[0.48273108, 0.84169098, 0.24192353], | ||
[0.41951382, 0.89475556, 0.15303802]], | ||
[[0.2493765 , 0.88257578, 0.39858669], | ||
[0.06407165, 0.67978738, 0.73060519], | ||
[0.78739648, 0.07009669, 0.61244856]], | ||
[[0.33123086, 0.91225007, 0.24101023], | ||
[0.02113432, 0.10669425, 0.99406724], | ||
[0.84421151, 0.19562951, 0.4990351 ]]]]) | ||
|
||
# I want the unit vectors in cols, not rows | ||
v_ref = nps.transpose(v_ref) | ||
|
||
@nps.broadcast_define( ( ('N',), ), | ||
('N','N')) | ||
def diag(d): | ||
return np.diag(d) | ||
|
||
X = nps.matmult(v_ref, diag(l_ref), np.linalg.inv(v_ref)) | ||
|
||
####### First, the simple non-broadcasted case | ||
l,v = mrcal.sorted_eig(X[1,2]) | ||
|
||
testutils.confirm_equal(l.shape, | ||
(3,), | ||
msg = "Single matrix: l.shape") | ||
testutils.confirm_equal(v.shape, | ||
(3,3,), | ||
msg = "Single matrix: v.shape") | ||
testutils.confirm(np.all(np.diff(l) > 0), | ||
msg = "Single matrix: monotonic eigenvalues") | ||
testutils.confirm_equal(l, | ||
np.sort(l_ref[1,2]), | ||
worstcase = True, | ||
eps=1e-6, | ||
msg = "Single matrix: eigenvalues") | ||
isorted = np.argsort(l_ref[1,2]) | ||
for i in range(len(isorted)): | ||
# I check the abs(inner) to ignore sign differences | ||
testutils.confirm_equal(np.abs(nps.inner(v[:,i],v_ref[1,2,:,isorted[i]])), | ||
1.0, | ||
worstcase = True, | ||
eps=1e-6, | ||
msg = f"Single matrix: eigenvector[{i}]") | ||
|
||
|
||
####### Full, broadcasted case | ||
l,v = mrcal.sorted_eig(X) | ||
|
||
all_shapes_passed = \ | ||
all((x for x in \ | ||
(testutils.confirm_equal(l.shape, | ||
X.shape[:-1], | ||
msg = "Broadcasted matrix: l.shape"), | ||
testutils.confirm_equal(v.shape, | ||
X.shape, | ||
msg = "Broadcasted matrix: v.shape")))) | ||
# I only bother checking the values if the shapes are right | ||
if all_shapes_passed: | ||
testutils.confirm(np.all(np.diff(l) > 0), | ||
msg = "Broadcasted matrix: monotonic eigenvalues") | ||
testutils.confirm_equal(l, | ||
np.sort(l_ref), | ||
worstcase = True, | ||
eps=1e-6, | ||
msg = "Broadcasted matrix: eigenvalues") | ||
|
||
# the complex eigenvector selection logic is the thing being tested, so I | ||
# check the reconstituted full matrix instead | ||
testutils.confirm_equal(nps.matmult(v, diag(l), np.linalg.inv(v)), | ||
X, | ||
worstcase = True, | ||
eps=1e-6, | ||
msg = f"Broadcasted matrix: eigenvectors") | ||
|
||
testutils.finish() |