Skip to content

dholzmueller/probmetrics

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

test Downloads

Probmetrics: Classification metrics and post-hoc calibration

This package (PyTorch-based) currently contains

  • classification metrics, especially also metrics for assessing the quality of probabilistic predictions, and
  • post-hoc calibration methods, especially a fast and accurate implementation of temperature scaling.

It accompanies our paper Rethinking Early Stopping: Refine, Then Calibrate. Please cite our paper if you use this repository for research purposes. The experiments from the paper can be found here: vision, tabular, theory.

Installation

Probmetrics is available via

pip install probmetrics

To obtain all functionality, install probmetrics[extra,dev,dirichletcal].

  • extra installs more packages for smooth ECE, Venn-Abers calibration, centered isotonic regression, the temperature scaling implementation in NetCal.
  • dev installs more packages for development (esp. documentation)
  • dirichletcal installs Dirichlet calibration, which however only works for Python 3.12 upwards.

Using temperature scaling

We provide a highly efficient implementation of temperature scaling that, unlike some other implementations, does not suffer from optimization issues.

Numpy interface

from probmetrics.calibrators import get_calibrator
import numpy as np

probas = np.asarray([[0.1, 0.9]])  # shape = (n_samples, n_classes)
labels = np.asarray([1])  # shape = (n_samples,)
# this is the version with Laplace smoothing, 
# use calibrate_with_mixture=False (the default) for no Laplace smoothing
calib = get_calibrator('temp-scaling', calibrate_with_mixture=True)
# other option: calib = MixtureCalibrator(TemperatureScalingCalibrator())
# there is also a fit_torch / predict_proba_torch interface
calib.fit(probas, labels)
calibrated_probas = calib.predict_proba(probas)

PyTorch interface

The PyTorch version can be used directly with GPU tensors, but this can actually be slower than CPU for smaller validation sets (around 1K-10K samples).

from probmetrics.distributions import CategoricalProbs
from probmetrics.calibrators import get_calibrator
import torch

probas = torch.as_tensor([[0.1, 0.9]])
labels = torch.as_tensor([1])

# temp-scaling with Laplace smoothing
calib = get_calibrator('ts-mix')

# if you have logits, you can use CategoricalLogits instead
calib.fit_torch(CategoricalProbs(probas), labels)
calib.predict_proba_torch(CategoricalProbs(probas))

Using our refinement and calibration metrics

We provide estimators for refinement error (loss after post-hoc calibration) and calibration error (loss improvement through post-hoc calibration). They can be used as follows:

import torch
from probmetrics.metrics import Metrics

# compute multiple metrics at once 
# this is more efficient than computing them individually
metrics = Metrics.from_names(['logloss', 
                              'refinement_logloss_ts-mix_all', 
                              'calib-err_logloss_ts-mix_all'])
y_true = torch.tensor(...)
y_logits = torch.tensor(...)
results = metrics.compute_all_from_labels_logits(y_true, y_logits)
print(results['refinement_logloss_ts-mix_all'].item())

Using more metrics

In general, while some metrics can be flexibly configured using the corresponding classes, many metrics are available through their name. Here are some relevant classification metrics:

from probmetrics.metrics import Metrics

metrics = Metrics.from_names([
    'logloss',
    'brier',  # for binary, this is 2x the brier from sklearn
    'accuracy', 'class-error',
    'auroc-ovr', # one-vs-rest
    'auroc-ovo-sklearn', # one-vs-one (can be slow!)
    # calibration metrics
    'ece-15', 'rmsce-15', 'mce-15', 'smece'
    'refinement_logloss_ts-mix_all', 
    'calib-err_logloss_ts-mix_all',
    'refinement_brier_ts-mix_all', 
    'calib-err_brier_ts-mix_all'
])

The following function returns a list of all metric names:

from probmetrics.metrics import Metrics, MetricType
Metrics.get_available_names(metric_type=MetricType.CLASS)

While there are some classes for regression metrics, they are not implemented.

Releases

  • v0.0.2:
    • Removed numpy<2.0 constraint,
    • allow 1D vectors in CategoricalLogits / CategoricalProbs
    • add TorchCal temperature scaling
    • minor fixes in AutoGluon temperature scaling that shouldn't affect the performance in practice
  • v0.0.1: Initial release

About

Classfication metrics and post-hoc calibration

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages