Skip to content

Commit

Permalink
Added to exercise 1.10, updated .sty file for circuit diagrams and la…
Browse files Browse the repository at this point in the history
…bels
  • Loading branch information
milesdai committed May 17, 2018
1 parent d560e0b commit 25c7579
Show file tree
Hide file tree
Showing 3 changed files with 39 additions and 13 deletions.
Binary file modified Chapter1.pdf
Binary file not shown.
26 changes: 19 additions & 7 deletions Chapter1.tex
Original file line number Diff line number Diff line change
Expand Up @@ -34,11 +34,12 @@

\item
To treat $R_2$ and $R_{load}$ as a single resistor, combine the two resistors which are in parallel to find that the combined (equivalent) resistance is $5\k\Ohm$. Now, we have a simple voltage divider with a $10\k\Ohm$ resistor in series with the $5\k\Ohm$ equivalent resistor. The output voltage is across this equivalent resistance. The output voltage is given by
\[V_{out} = V_{in} \frac{5\k\Ohm}{10\k\Ohm + 5\k\Ohm} = \frac{30\V}{3} = 10\V \]
\[V_{out} = V_{in} \frac{5\k\Ohm}{10\k\Ohm + 5\k\Ohm} = \frac{30\V}{3} = \mans{10\V} \]

\item
We can redraw the voltage divider circuit to make the ``port'' clearer.
\begin{circuit}
We can redraw the voltage divider circuit to make the ``port'' clearer.
\begin{circuit}{fig:1.10.1}{Voltage divider with port shown.}
% \label{1.10fig1}
(0,2) to[V=$V_{\in}$] (0,0)
to[short] (2,0)
to[R=$R_2$] (2,2)
Expand All @@ -50,15 +51,26 @@

We can find $V_{\Th}$ by leaving the ports open (open circuit) and measuring $V_\out$, the voltage across $R_2$. This comes out to be half the input voltage when $R_1 = R_2$, so $V_\out = 15\V$. Thus $V_{\Th} = 15\V$.

To find the Th\'evinen resistance, we need to find the short circuit current, $I_{SC}$.
To find the Th\'evinen resistance, we need to find the short circuit current, $I_{SC}$. We short circuit the port and measure the current flowing through it.
\begin{circuit}{fig:1.10.2}{Voltage divider with short circuit on the output.}
(0,2) to[V=$V_{\in}$] (0,0)
to[short] (2,0)
to[R=$R_2$] (2,2)
to[R=$R_1$](0,2)
(2,0) to[short] (3,0)
(2,2) to[short] (3,2)
(3,0) to[short, i_<=$I_{SC}$] (3,2)
\end{circuit}

\todo{finish}
In this circuit, no current flows through $R_2$, flowing through the short instead. Thus we have $I_{SC} = \dfrac{V_\in }{R_1}$. From this, we can find $R_\Th$ from $R_\Th = \dfrac{V_\Th}{I_{SC}}$. This gives us $R_\Th = \dfrac{15\V \cdot R_1}{V_\in} = \mans{\dfrac{150\k}{V_\in}\Ohm}$.

\begin{circuit}
The Th\'evenin equivalent circuit takes the form shown below.
\begin{circuit}{fig:1.10.3}{Th\'evenin equivalent circuit.}
(0,2) to[V=$V_{\Th}$] (0,0)
to[short, -o] (3,0)
(0,2) to[R=$R_{\Th}$, -o] (3,2)
;
(3,0) to[open, v_<=$V_\out$] (3,2)
\end{circuit}
This circuit is equivalent to the circuit in Figure \ref{fig:1.10.1}.
\end{enumerate}
\end{document}
26 changes: 20 additions & 6 deletions taoesolutions.sty
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,12 @@
\usepackage{circuitikz}
\usepackage{amsmath}
\usepackage{enumitem}
\usepackage{float}
\usepackage[
margin=1in,
includefoot,
footskip=30pt,
]{geometry}

\newcommand{\todo}[1]{\textcolor{red}{\textbf{TODO: #1}}}
\renewcommand{\title}[1]{\begin{center}\begin{Huge}#1\end{Huge}\end{center}}
Expand All @@ -22,13 +28,21 @@
\renewcommand{\in}{\ensuremath{\text{in}}} % In (for V_{In})
\newcommand{\out}{\ensuremath{\text{out}}}

\newenvironment{circuit}
{\begin{center}
\begin{circuitikz}[american]\draw
\newenvironment{circuit}[2]% param1=label, param2=caption
{
\begin{figure}[H]
\caption{#2}
\label{#1}

\begin{center}
% \centering
\begin{circuitikz}[american]\draw
}
{;
\end{circuitikz}
\end{center}
{
;
\end{circuitikz}
\end{center}
\end{figure}
}

% Set first level of list to (a) format
Expand Down

0 comments on commit 25c7579

Please sign in to comment.