Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update multiple-gpus-concise.md #1354

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
29 changes: 14 additions & 15 deletions chapter_computational-performance/multiple-gpus-concise.md
Original file line number Diff line number Diff line change
Expand Up @@ -61,27 +61,26 @@ def resnet18(num_classes):
#@save
def resnet18(num_classes, in_channels=1):
"""稍加修改的ResNet-18模型"""
def resnet_block(in_channels, out_channels, num_residuals,
def resnet_block(out_channels, num_residuals,
first_block=False):
blk = []
for i in range(num_residuals):
if i == 0 and not first_block:
blk.append(d2l.Residual(in_channels, out_channels,
blk.append(d2l.Residual(out_channels,
use_1x1conv=True, strides=2))
else:
blk.append(d2l.Residual(out_channels, out_channels))
blk.append(d2l.Residual(out_channels))
return nn.Sequential(*blk)

# 该模型使用了更小的卷积核、步长和填充,而且删除了最大汇聚层
net = nn.Sequential(
nn.Conv2d(in_channels, 64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.ReLU())
net.add_module("resnet_block1", resnet_block(
64, 64, 2, first_block=True))
net.add_module("resnet_block2", resnet_block(64, 128, 2))
net.add_module("resnet_block3", resnet_block(128, 256, 2))
net.add_module("resnet_block4", resnet_block(256, 512, 2))
net.add_module("resnet_block1", resnet_block(64, 2, first_block=True))
net.add_module("resnet_block2", resnet_block(128, 2))
net.add_module("resnet_block3", resnet_block(256, 2))
net.add_module("resnet_block4", resnet_block(512, 2))
net.add_module("global_avg_pool", nn.AdaptiveAvgPool2d((1,1)))
net.add_module("fc", nn.Sequential(nn.Flatten(),
nn.Linear(512, num_classes)))
Expand All @@ -93,15 +92,15 @@ def resnet18(num_classes, in_channels=1):
#@save
def resnet18(num_classes, in_channels=1):
"""稍加修改的ResNet-18模型"""
def resnet_block(in_channels, out_channels, num_residuals,
def resnet_block(out_channels, num_residuals,
first_block=False):
blk = []
for i in range(num_residuals):
if i == 0 and not first_block:
blk.append(d2l.Residual(in_channels, out_channels,
blk.append(d2l.Residual(out_channels,
use_1x1conv=True, strides=2))
else:
blk.append(d2l.Residual(out_channels, out_channels))
blk.append(d2l.Residual(out_channels))
return nn.Sequential(*blk)

# 该模型使用了更小的卷积核、步长和填充,而且删除了最大汇聚层
Expand All @@ -111,9 +110,9 @@ def resnet18(num_classes, in_channels=1):
nn.ReLU())
net.add_sublayer("resnet_block1", resnet_block(
64, 64, 2, first_block=True))
net.add_sublayer("resnet_block2", resnet_block(64, 128, 2))
net.add_sublayer("resnet_block3", resnet_block(128, 256, 2))
net.add_sublayer("resnet_block4", resnet_block(256, 512, 2))
net.add_sublayer("resnet_block2", resnet_block(128, 2))
net.add_sublayer("resnet_block3", resnet_block(256, 2))
net.add_sublayer("resnet_block4", resnet_block(512, 2))
net.add_sublayer("global_avg_pool", nn.AdaptiveAvgPool2D((1, 1)))
net.add_sublayer("fc", nn.Sequential(nn.Flatten(),
nn.Linear(512, num_classes)))
Expand Down Expand Up @@ -361,4 +360,4 @@ train(net, num_gpus=2, batch_size=512, lr=0.2)

:begin_tab:`paddle`
[Discussions](https://discuss.d2l.ai/t/11861)
:end_tab:
:end_tab:
Loading