Tensorflow implementation of the model described in the paper Conditional Variational AutoEncoder to Predict Suitable Conditions for Hydrogenation Reactions
- descriptors_generation.py - functions for data preparation (x, y generation)
- cvae_models.py - functions for RC CVAE modeling
- Run_VAEs.ipynb - tutorial
- example_data/example_hydrogenation_USPTO.rdf - example dataset
- example_data/acids_bases_poisons_list.txt - list of additives: acids, bases, catalytic poisons
- example_data/catalysts_list.txt - list of catalysts
Note: Because the Reaxys database is commercially available, we do not have permission to release the datasets used in this paper to the public. Instead, we provide an example dataset ("example_data/example_hydrogenation_USPTO.rdf") so that anyone can test the code. It contains some hydrogenation chemical reaction records from USPTO database, preliminary standardized.
Example of usage can be found in Run_VAEs.ipynb
Only python 3.6
- numpy == 1.18.1
- tensorflow-gpu == 2.1.0 ; python_version == '3.6'
- tensorflow == 2.1.0
- tensorflow_probability == 0.9.0
- keras == 2.2.4
- h5py == 2.10.0
- git+https://github.com/cimm-kzn/s-vae-tf.git
- cgrtools == 3.1.9
- CIMtools==3.1.0
- Fragmentor
- Install dependencies from requirements.py
- Download Fragmentor 2017 from https://github.com/cimm-kzn/CIMtools/tree/master/Fragmentor based on your OS and add it to bin/ folder of your virtual environment
- Rename Fragmentor file to fragmentor-2017.x
@Article{Mazitov2024, title={Conditional variational autoEncoder to predict suitable conditions for hydrogenation reactions}, author={Mazitov, Daniyar A. and Poyezzhayeva, Assima and Afonina, Valentina A. and Gimadiev, Timur R. and Madzhidov, Timur I.}, }exa