forked from cupy/cupy
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request cupy#8062 from emcastillo/cepstrum
add `cupyx.signal.{complex_cepstrum,real_cepstrum,inverse_complex_cepstrum,minimum_phase}`
- Loading branch information
1 parent
0b75202
commit 4edd71e
Showing
5 changed files
with
387 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,2 +1,5 @@ | ||
from cupyx.signal._acoustics import complex_cepstrum, real_cepstrum # NOQA | ||
from cupyx.signal._acoustics import inverse_complex_cepstrum # NOQA | ||
from cupyx.signal._acoustics import minimum_phase # NOQA | ||
from cupyx.signal._convolution import convolve1d3o # NOQA | ||
from cupyx.signal._radartools import pulse_compression, pulse_doppler, cfar_alpha # NOQA |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
from cupyx.signal._acoustics._cepstrum import complex_cepstrum, real_cepstrum # NOQA | ||
from cupyx.signal._acoustics._cepstrum import inverse_complex_cepstrum # NOQA | ||
from cupyx.signal._acoustics._cepstrum import minimum_phase # NOQA |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,188 @@ | ||
# Copyright (c) 2019-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | ||
# | ||
# Permission is hereby granted, free of charge, to any person obtaining a | ||
# copy of this software and associated documentation files (the "Software"), | ||
# to deal in the Software without restriction, including without limitation | ||
# the rights to use, copy, modify, merge, publish, distribute, sublicense, | ||
# and/or sell copies of the Software, and to permit persons to whom the | ||
# Software is furnished to do so, subject to the following conditions: | ||
# | ||
# The above copyright notice and this permission notice shall be included in | ||
# all copies or substantial portions of the Software. | ||
# | ||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | ||
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | ||
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER | ||
# DEALINGS IN THE SOFTWARE | ||
|
||
|
||
import cupy | ||
|
||
|
||
_real_cepstrum_kernel = cupy.ElementwiseKernel( | ||
"T spectrum", | ||
"T output", | ||
""" | ||
output = log( abs( spectrum ) ); | ||
""", | ||
"_real_cepstrum_kernel", | ||
options=("-std=c++11",), | ||
) | ||
|
||
|
||
def real_cepstrum(x, n=None, axis=-1): | ||
r""" | ||
Calculates the real cepstrum of an input sequence x where the cepstrum is | ||
defined as the inverse Fourier transform of the log magnitude DFT | ||
(spectrum) of a signal. It's primarily used for source/speaker separation | ||
in speech signal processing | ||
Parameters | ||
---------- | ||
x : ndarray | ||
Input sequence, if x is a matrix, return cepstrum in direction of axis | ||
n : int | ||
Size of Fourier Transform; If none, will use length of input array | ||
axis: int | ||
Direction for cepstrum calculation | ||
Returns | ||
------- | ||
ceps : ndarray | ||
Complex cepstrum result | ||
""" | ||
x = cupy.asarray(x) | ||
spectrum = cupy.fft.fft(x, n=n, axis=axis) | ||
spectrum = _real_cepstrum_kernel(spectrum) | ||
return cupy.fft.ifft(spectrum, n=n, axis=axis).real | ||
|
||
|
||
_complex_cepstrum_kernel = cupy.ElementwiseKernel( | ||
"C spectrum, raw T unwrapped", | ||
"C output, T ndelay", | ||
""" | ||
ndelay = round( unwrapped[center] / M_PI ); | ||
const T temp { unwrapped[i] - ( M_PI * ndelay * i / center ) }; | ||
output = log( abs( spectrum ) ) + C( 0, temp ); | ||
""", | ||
"_complex_cepstrum_kernel", | ||
options=("-std=c++11",), | ||
return_tuple=True, | ||
loop_prep="const int center { static_cast<int>( 0.5 * \ | ||
( _ind.size() + 1 ) ) };", | ||
) | ||
|
||
|
||
def complex_cepstrum(x, n=None, axis=-1): | ||
r""" | ||
Calculates the complex cepstrum of a real valued input sequence x | ||
where the cepstrum is defined as the inverse Fourier transform | ||
of the log magnitude DFT (spectrum) of a signal. It's primarily | ||
used for source/speaker separation in speech signal processing. | ||
The input is altered to have zero-phase at pi radians (180 degrees) | ||
Parameters | ||
---------- | ||
x : ndarray | ||
Input sequence, if x is a matrix, return cepstrum in direction of axis | ||
n : int | ||
Size of Fourier Transform; If none, will use length of input array | ||
axis: int | ||
Direction for cepstrum calculation | ||
Returns | ||
------- | ||
ceps : ndarray | ||
Complex cepstrum result | ||
""" | ||
x = cupy.asarray(x) | ||
spectrum = cupy.fft.fft(x, n=n, axis=axis) | ||
unwrapped = cupy.unwrap(cupy.angle(spectrum)) | ||
log_spectrum, ndelay = _complex_cepstrum_kernel(spectrum, unwrapped) | ||
ceps = cupy.fft.ifft(log_spectrum, n=n, axis=axis).real | ||
|
||
return ceps, ndelay | ||
|
||
|
||
_inverse_complex_cepstrum_kernel = cupy.ElementwiseKernel( | ||
"C log_spectrum, int32 ndelay, float64 pi", | ||
"C spectrum", | ||
""" | ||
const double wrapped { log_spectrum.imag() + M_PI * ndelay * i / center }; | ||
spectrum = exp( C( log_spectrum.real(), wrapped ) ) | ||
""", | ||
"_inverse_complex_cepstrum_kernel", | ||
options=("-std=c++11",), | ||
loop_prep="const double center { 0.5 * ( _ind.size() + 1 ) };", | ||
) | ||
|
||
|
||
def inverse_complex_cepstrum(ceps, ndelay): | ||
r"""Compute the inverse complex cepstrum of a real sequence. | ||
ceps : ndarray | ||
Real sequence to compute inverse complex cepstrum of. | ||
ndelay: int | ||
The amount of samples of circular delay added to `x`. | ||
Returns | ||
------- | ||
x : ndarray | ||
The inverse complex cepstrum of the real sequence `ceps`. | ||
The inverse complex cepstrum is given by | ||
.. math:: x[n] = F^{-1}\left{\exp(F(c[n]))\right} | ||
where :math:`c_[n]` is the input signal and :math:`F` and :math:`F_{-1} | ||
are respectively the forward and backward Fourier transform. | ||
""" | ||
ceps = cupy.asarray(ceps) | ||
log_spectrum = cupy.fft.fft(ceps) | ||
spectrum = _inverse_complex_cepstrum_kernel(log_spectrum, ndelay, cupy.pi) | ||
iceps = cupy.fft.ifft(spectrum).real | ||
|
||
return iceps | ||
|
||
|
||
_minimum_phase_kernel = cupy.ElementwiseKernel( | ||
"T ceps", | ||
"T window", | ||
""" | ||
if ( !i ) { | ||
window = ceps; | ||
} else if ( i < bend ) { | ||
window = ceps * 2.0; | ||
} else if ( i == bend ) { | ||
window = ceps * ( 1 - odd ); | ||
} else { | ||
window = 0; | ||
} | ||
""", | ||
"_minimum_phase_kernel", | ||
options=("-std=c++11",), | ||
loop_prep="const bool odd { _ind.size() & 1 }; \ | ||
const int bend { static_cast<int>( 0.5 * \ | ||
( _ind.size() + odd ) ) };", | ||
) | ||
|
||
|
||
def minimum_phase(x, n=None): | ||
r"""Compute the minimum phase reconstruction of a real sequence. | ||
x : ndarray | ||
Real sequence to compute the minimum phase reconstruction of. | ||
n : {None, int}, optional | ||
Length of the Fourier transform. | ||
Compute the minimum phase reconstruction of a real sequence using the | ||
real cepstrum. | ||
Returns | ||
------- | ||
m : ndarray | ||
The minimum phase reconstruction of the real sequence `x`. | ||
""" | ||
if n is None: | ||
n = len(x) | ||
ceps = real_cepstrum(x, n=n) | ||
window = _minimum_phase_kernel(ceps) | ||
m = cupy.fft.ifft(cupy.exp(cupy.fft.fft(window))).real | ||
|
||
return m |
Empty file.
193 changes: 193 additions & 0 deletions
193
tests/cupyx_tests/signal_tests/acoustics_tests/test_cepstrum.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,193 @@ | ||
# Copyright (c) 2019-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | ||
# | ||
# Permission is hereby granted, free of charge, to any person obtaining a | ||
# copy of this software and associated documentation files (the "Software"), | ||
# to deal in the Software without restriction, including without limitation | ||
# the rights to use, copy, modify, merge, publish, distribute, sublicense, | ||
# and/or sell copies of the Software, and to permit persons to whom the | ||
# Software is furnished to do so, subject to the following conditions: | ||
# | ||
# The above copyright notice and this permission notice shall be included in | ||
# all copies or substantial portions of the Software. | ||
# | ||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | ||
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | ||
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER | ||
# DEALINGS IN THE SOFTWARE. | ||
|
||
import pytest | ||
import numpy | ||
|
||
import cupy | ||
from cupy import testing | ||
import cupyx.signal | ||
|
||
|
||
# https://github.com/python-acoustics/python-acoustics/blob/master/acoustics/cepstrum.py | ||
def complex_cepstrum(x, n=None): | ||
"""Compute the complex cepstrum of a real sequence. | ||
Parameters | ||
---------- | ||
x : ndarray | ||
Real sequence to compute complex cepstrum of. | ||
n : {None, int}, optional | ||
Length of the Fourier transform. | ||
Returns | ||
------- | ||
ceps : ndarray | ||
The complex cepstrum of the real data sequence `x` computed using the | ||
Fourier transform. | ||
ndelay : int | ||
The amount of samples of circular delay added to `x`. | ||
The complex cepstrum is given by | ||
.. math:: c[n] = F^{-1}\\left{\\log_{10}{\\left(F{x[n]}\\right)}\\right} | ||
where :math:`x_[n]` is the input signal and :math:`F` and :math:`F_{-1} | ||
are respectively the forward and backward Fourier transform. | ||
-------- | ||
""" | ||
|
||
def _unwrap(phase): | ||
samples = phase.shape[-1] | ||
unwrapped = numpy.unwrap(phase) | ||
center = (samples + 1) // 2 | ||
if samples == 1: | ||
center = 0 | ||
ndelay = numpy.array(numpy.round(unwrapped[..., center] / numpy.pi)) | ||
unwrapped -= (numpy.pi * ndelay[..., None] * numpy.arange(samples) | ||
/ center) | ||
return unwrapped, ndelay | ||
|
||
spectrum = numpy.fft.fft(x, n=n) | ||
unwrapped_phase, ndelay = _unwrap(numpy.angle(spectrum)) | ||
log_spectrum = numpy.log(numpy.abs(spectrum)) + 1j * unwrapped_phase | ||
ceps = numpy.fft.ifft(log_spectrum).real | ||
|
||
return ceps, ndelay | ||
|
||
|
||
def real_cepstrum(x, n=None): | ||
""" | ||
Compute the real cepstrum of a real sequence. | ||
x : ndarray | ||
Real sequence to compute real cepstrum of. | ||
n : {None, int}, optional | ||
Length of the Fourier transform. | ||
Returns | ||
------- | ||
ceps: ndarray | ||
The real cepstrum. | ||
""" | ||
spectrum = numpy.fft.fft(x, n=n) | ||
ceps = numpy.fft.ifft(numpy.log(numpy.abs(spectrum))).real | ||
|
||
return ceps | ||
|
||
|
||
def inverse_complex_cepstrum(ceps, ndelay): | ||
r"""Compute the inverse complex cepstrum of a real sequence. | ||
ceps : ndarray | ||
Real sequence to compute inverse complex cepstrum of. | ||
ndelay: int | ||
The amount of samples of circular delay added to `x`. | ||
Returns | ||
------- | ||
x : ndarray | ||
The inverse complex cepstrum of the real sequence `ceps`. | ||
The inverse complex cepstrum is given by | ||
.. math:: x[n] = F^{-1}\left{\exp(F(c[n]))\right} | ||
where :math:`c_[n]` is the input signal and :math:`F` and :math:`F_{-1} | ||
are respectively the forward and backward Fourier transform. | ||
""" | ||
|
||
def _wrap(phase, ndelay): | ||
ndelay = numpy.array(ndelay) | ||
samples = phase.shape[-1] | ||
center = (samples + 1) // 2 | ||
wrapped = ( | ||
phase + numpy.pi * ndelay[..., None] * numpy.arange(samples) | ||
/ center | ||
) | ||
return wrapped | ||
|
||
log_spectrum = numpy.fft.fft(ceps) | ||
spectrum = numpy.exp( | ||
log_spectrum.real + 1j * _wrap(log_spectrum.imag, ndelay) | ||
) | ||
x = numpy.fft.ifft(spectrum).real | ||
|
||
return x | ||
|
||
|
||
def minimum_phase(x, n=None): | ||
r"""Compute the minimum phase reconstruction of a real sequence. | ||
x : ndarray | ||
Real sequence to compute the minimum phase reconstruction of. | ||
n : {None, int}, optional | ||
Length of the Fourier transform. | ||
Compute the minimum phase reconstruction of a real sequence using the | ||
real cepstrum. | ||
Returns | ||
------- | ||
m : ndarray | ||
The minimum phase reconstruction of the real sequence `x`. | ||
""" | ||
if n is None: | ||
n = len(x) | ||
ceps = real_cepstrum(x, n=n) | ||
odd = n % 2 | ||
window = numpy.concatenate( | ||
( | ||
[1.0], | ||
2.0 * numpy.ones((n + odd) // 2 - 1), | ||
numpy.ones(1 - odd), | ||
numpy.zeros((n + odd) // 2 - 1), | ||
) | ||
) | ||
|
||
m = numpy.fft.ifft(numpy.exp(numpy.fft.fft(window * ceps))).real | ||
|
||
return m | ||
|
||
|
||
@pytest.mark.parametrize("num_samps", [2**8, 2**14]) | ||
@pytest.mark.parametrize("n", [123, 256]) | ||
def test_complex_cepstrum(num_samps, n): | ||
cpu_sig = numpy.random.rand(num_samps) | ||
gpu_sig = cupy.array(cpu_sig) | ||
gpu_out = cupyx.signal.complex_cepstrum(gpu_sig, n) | ||
cpu_out = complex_cepstrum(cpu_sig, n) | ||
testing.assert_allclose(cpu_out[0], gpu_out[0]) | ||
testing.assert_allclose(cpu_out[1], gpu_out[1]) | ||
|
||
|
||
@pytest.mark.parametrize("num_samps", [2**8, 2**14]) | ||
@pytest.mark.parametrize("n", [123, 256]) | ||
def test_real_cepstrum(num_samps, n): | ||
cpu_sig = numpy.random.rand(num_samps) | ||
gpu_sig = cupy.array(cpu_sig) | ||
gpu_out = cupyx.signal.real_cepstrum(gpu_sig, n) | ||
cpu_out = real_cepstrum(cpu_sig, n) | ||
testing.assert_allclose(cpu_out, gpu_out) | ||
|
||
|
||
@pytest.mark.parametrize("num_samps", [2**10]) | ||
@pytest.mark.parametrize("n", [123, 256]) | ||
def test_inverse_complex_cepstrum(num_samps, n): | ||
cpu_sig = numpy.random.rand(num_samps) | ||
gpu_sig = cupy.array(cpu_sig) | ||
gpu_out = cupyx.signal.inverse_complex_cepstrum(gpu_sig, n) | ||
cpu_out = inverse_complex_cepstrum(cpu_sig, n) | ||
testing.assert_allclose(cpu_out, gpu_out) | ||
|
||
|
||
@pytest.mark.parametrize("num_samps", [2**8, 2**14]) | ||
@pytest.mark.parametrize("n", [123, 256]) | ||
def test_minimum_phase(num_samps, n): | ||
cpu_sig = numpy.random.rand(num_samps) | ||
gpu_sig = cupy.array(cpu_sig) | ||
gpu_out = cupyx.signal.minimum_phase(gpu_sig, n) | ||
cpu_out = minimum_phase(cpu_sig, n) | ||
testing.assert_allclose(cpu_out, gpu_out) |