Skip to content

Commit

Permalink
Merge pull request #1831 from borglab/hybrid-error-scalars
Browse files Browse the repository at this point in the history
  • Loading branch information
varunagrawal authored Sep 18, 2024
2 parents 525ff7c + fa35384 commit f7b5f3c
Show file tree
Hide file tree
Showing 26 changed files with 646 additions and 256 deletions.
34 changes: 11 additions & 23 deletions gtsam/hybrid/HybridGaussianConditional.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -55,23 +55,14 @@ HybridGaussianConditional::conditionals() const {
return conditionals_;
}

/* *******************************************************************************/
HybridGaussianConditional::HybridGaussianConditional(
KeyVector &&continuousFrontals, KeyVector &&continuousParents,
DiscreteKeys &&discreteParents,
std::vector<GaussianConditional::shared_ptr> &&conditionals)
: HybridGaussianConditional(continuousFrontals, continuousParents,
discreteParents,
Conditionals(discreteParents, conditionals)) {}

/* *******************************************************************************/
HybridGaussianConditional::HybridGaussianConditional(
const KeyVector &continuousFrontals, const KeyVector &continuousParents,
const DiscreteKeys &discreteParents,
const DiscreteKey &discreteParent,
const std::vector<GaussianConditional::shared_ptr> &conditionals)
: HybridGaussianConditional(continuousFrontals, continuousParents,
discreteParents,
Conditionals(discreteParents, conditionals)) {}
DiscreteKeys{discreteParent},
Conditionals({discreteParent}, conditionals)) {}

/* *******************************************************************************/
// TODO(dellaert): This is copy/paste: HybridGaussianConditional should be
Expand Down Expand Up @@ -219,23 +210,20 @@ std::shared_ptr<HybridGaussianFactor> HybridGaussianConditional::likelihood(

const DiscreteKeys discreteParentKeys = discreteKeys();
const KeyVector continuousParentKeys = continuousParents();
const HybridGaussianFactor::Factors likelihoods(
conditionals_, [&](const GaussianConditional::shared_ptr &conditional) {
const HybridGaussianFactor::FactorValuePairs likelihoods(
conditionals_,
[&](const GaussianConditional::shared_ptr &conditional)
-> GaussianFactorValuePair {
const auto likelihood_m = conditional->likelihood(given);
const double Cgm_Kgcm =
logConstant_ - conditional->logNormalizationConstant();
if (Cgm_Kgcm == 0.0) {
return likelihood_m;
return {likelihood_m, 0.0};
} else {
// Add a constant factor to the likelihood in case the noise models
// Add a constant to the likelihood in case the noise models
// are not all equal.
GaussianFactorGraph gfg;
gfg.push_back(likelihood_m);
Vector c(1);
c << std::sqrt(2.0 * Cgm_Kgcm);
auto constantFactor = std::make_shared<JacobianFactor>(c);
gfg.push_back(constantFactor);
return std::make_shared<JacobianFactor>(gfg);
double c = 2.0 * Cgm_Kgcm;
return {likelihood_m, c};
}
});
return std::make_shared<HybridGaussianFactor>(
Expand Down
23 changes: 6 additions & 17 deletions gtsam/hybrid/HybridGaussianConditional.h
Original file line number Diff line number Diff line change
Expand Up @@ -107,29 +107,18 @@ class GTSAM_EXPORT HybridGaussianConditional
const Conditionals &conditionals);

/**
* @brief Make a Gaussian Mixture from a list of Gaussian conditionals
* @brief Make a Gaussian Mixture from a vector of Gaussian conditionals.
* The DecisionTree-based constructor is preferred over this one.
*
* @param continuousFrontals The continuous frontal variables
* @param continuousParents The continuous parent variables
* @param discreteParents Discrete parents variables
* @param conditionals List of conditionals
*/
HybridGaussianConditional(
KeyVector &&continuousFrontals, KeyVector &&continuousParents,
DiscreteKeys &&discreteParents,
std::vector<GaussianConditional::shared_ptr> &&conditionals);

/**
* @brief Make a Gaussian Mixture from a list of Gaussian conditionals
*
* @param continuousFrontals The continuous frontal variables
* @param continuousParents The continuous parent variables
* @param discreteParents Discrete parents variables
* @param conditionals List of conditionals
* @param discreteParent Single discrete parent variable
* @param conditionals Vector of conditionals with the same size as the
* cardinality of the discrete parent.
*/
HybridGaussianConditional(
const KeyVector &continuousFrontals, const KeyVector &continuousParents,
const DiscreteKeys &discreteParents,
const DiscreteKey &discreteParent,
const std::vector<GaussianConditional::shared_ptr> &conditionals);

/// @}
Expand Down
49 changes: 47 additions & 2 deletions gtsam/hybrid/HybridGaussianFactor.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -28,11 +28,56 @@

namespace gtsam {

/**
* @brief Helper function to augment the [A|b] matrices in the factor components
* with the normalizer values.
* This is done by storing the normalizer value in
* the `b` vector as an additional row.
*
* @param factors DecisionTree of GaussianFactors and arbitrary scalars.
* Gaussian factor in factors.
* @return HybridGaussianFactor::Factors
*/
HybridGaussianFactor::Factors augment(
const HybridGaussianFactor::FactorValuePairs &factors) {
// Find the minimum value so we can "proselytize" to positive values.
// Done because we can't have sqrt of negative numbers.
HybridGaussianFactor::Factors gaussianFactors;
AlgebraicDecisionTree<Key> valueTree;
std::tie(gaussianFactors, valueTree) = unzip(factors);

// Normalize
double min_value = valueTree.min();
AlgebraicDecisionTree<Key> values =
valueTree.apply([&min_value](double n) { return n - min_value; });

// Finally, update the [A|b] matrices.
auto update = [&values](const Assignment<Key> &assignment,
const HybridGaussianFactor::sharedFactor &gf) {
auto jf = std::dynamic_pointer_cast<JacobianFactor>(gf);
if (!jf) return gf;
// If the log_normalizer is 0, do nothing
if (values(assignment) == 0.0) return gf;

GaussianFactorGraph gfg;
gfg.push_back(jf);

Vector c(1);
c << std::sqrt(values(assignment));
auto constantFactor = std::make_shared<JacobianFactor>(c);

gfg.push_back(constantFactor);
return std::dynamic_pointer_cast<GaussianFactor>(
std::make_shared<JacobianFactor>(gfg));
};
return gaussianFactors.apply(update);
}

/* *******************************************************************************/
HybridGaussianFactor::HybridGaussianFactor(const KeyVector &continuousKeys,
const DiscreteKeys &discreteKeys,
const Factors &factors)
: Base(continuousKeys, discreteKeys), factors_(factors) {}
const FactorValuePairs &factors)
: Base(continuousKeys, discreteKeys), factors_(augment(factors)) {}

/* *******************************************************************************/
bool HybridGaussianFactor::equals(const HybridFactor &lf, double tol) const {
Expand Down
25 changes: 15 additions & 10 deletions gtsam/hybrid/HybridGaussianFactor.h
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,9 @@ class HybridValues;
class DiscreteValues;
class VectorValues;

/// Alias for pair of GaussianFactor::shared_pointer and a double value.
using GaussianFactorValuePair = std::pair<GaussianFactor::shared_ptr, double>;

/**
* @brief Implementation of a discrete conditional mixture factor.
* Implements a joint discrete-continuous factor where the discrete variable
Expand All @@ -52,7 +55,9 @@ class GTSAM_EXPORT HybridGaussianFactor : public HybridFactor {

using sharedFactor = std::shared_ptr<GaussianFactor>;

/// typedef for Decision Tree of Gaussian factors and log-constant.
/// typedef for Decision Tree of Gaussian factors and arbitrary value.
using FactorValuePairs = DecisionTree<Key, GaussianFactorValuePair>;
/// typedef for Decision Tree of Gaussian factors.
using Factors = DecisionTree<Key, sharedFactor>;

private:
Expand Down Expand Up @@ -80,26 +85,26 @@ class GTSAM_EXPORT HybridGaussianFactor : public HybridFactor {
* @param continuousKeys A vector of keys representing continuous variables.
* @param discreteKeys A vector of keys representing discrete variables and
* their cardinalities.
* @param factors The decision tree of Gaussian factors stored
* as the mixture density.
* @param factors The decision tree of Gaussian factors and arbitrary scalars.
*/
HybridGaussianFactor(const KeyVector &continuousKeys,
const DiscreteKeys &discreteKeys,
const Factors &factors);
const FactorValuePairs &factors);

/**
* @brief Construct a new HybridGaussianFactor object using a vector of
* GaussianFactor shared pointers.
*
* @param continuousKeys Vector of keys for continuous factors.
* @param discreteKeys Vector of discrete keys.
* @param factors Vector of gaussian factor shared pointers.
* @param discreteKey The discrete key to index each component.
* @param factors Vector of gaussian factor shared pointers
* and arbitrary scalars. Same size as the cardinality of discreteKey.
*/
HybridGaussianFactor(const KeyVector &continuousKeys,
const DiscreteKeys &discreteKeys,
const std::vector<sharedFactor> &factors)
: HybridGaussianFactor(continuousKeys, discreteKeys,
Factors(discreteKeys, factors)) {}
const DiscreteKey &discreteKey,
const std::vector<GaussianFactorValuePair> &factors)
: HybridGaussianFactor(continuousKeys, {discreteKey},
FactorValuePairs({discreteKey}, factors)) {}

/// @}
/// @name Testable
Expand Down
22 changes: 11 additions & 11 deletions gtsam/hybrid/HybridGaussianFactorGraph.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -92,13 +92,13 @@ void HybridGaussianFactorGraph::printErrors(
// Clear the stringstream
ss.str(std::string());

if (auto gmf = std::dynamic_pointer_cast<HybridGaussianFactor>(factor)) {
if (auto hgf = std::dynamic_pointer_cast<HybridGaussianFactor>(factor)) {
if (factor == nullptr) {
std::cout << "nullptr"
<< "\n";
} else {
gmf->operator()(values.discrete())->print(ss.str(), keyFormatter);
std::cout << "error = " << gmf->error(values) << std::endl;
hgf->operator()(values.discrete())->print(ss.str(), keyFormatter);
std::cout << "error = " << factor->error(values) << std::endl;
}
} else if (auto hc = std::dynamic_pointer_cast<HybridConditional>(factor)) {
if (factor == nullptr) {
Expand Down Expand Up @@ -348,7 +348,7 @@ static std::shared_ptr<Factor> createHybridGaussianFactor(
const KeyVector &continuousSeparator,
const DiscreteKeys &discreteSeparator) {
// Correct for the normalization constant used up by the conditional
auto correct = [&](const Result &pair) -> GaussianFactor::shared_ptr {
auto correct = [&](const Result &pair) -> GaussianFactorValuePair {
const auto &[conditional, factor] = pair;
if (factor) {
auto hf = std::dynamic_pointer_cast<HessianFactor>(factor);
Expand All @@ -357,10 +357,10 @@ static std::shared_ptr<Factor> createHybridGaussianFactor(
// as per the Hessian definition
hf->constantTerm() += 2.0 * conditional->logNormalizationConstant();
}
return factor;
return {factor, 0.0};
};
DecisionTree<Key, GaussianFactor::shared_ptr> newFactors(eliminationResults,
correct);
DecisionTree<Key, GaussianFactorValuePair> newFactors(eliminationResults,
correct);

return std::make_shared<HybridGaussianFactor>(continuousSeparator,
discreteSeparator, newFactors);
Expand Down Expand Up @@ -597,10 +597,10 @@ GaussianFactorGraph HybridGaussianFactorGraph::operator()(
gfg.push_back(gf);
} else if (auto gc = std::dynamic_pointer_cast<GaussianConditional>(f)) {
gfg.push_back(gf);
} else if (auto gmf = std::dynamic_pointer_cast<HybridGaussianFactor>(f)) {
gfg.push_back((*gmf)(assignment));
} else if (auto gm = dynamic_pointer_cast<HybridGaussianConditional>(f)) {
gfg.push_back((*gm)(assignment));
} else if (auto hgf = std::dynamic_pointer_cast<HybridGaussianFactor>(f)) {
gfg.push_back((*hgf)(assignment));
} else if (auto hgc = dynamic_pointer_cast<HybridGaussianConditional>(f)) {
gfg.push_back((*hgc)(assignment));
} else {
continue;
}
Expand Down
Loading

0 comments on commit f7b5f3c

Please sign in to comment.