Skip to content

Commit

Permalink
Sketch out first custom op registration
Browse files Browse the repository at this point in the history
  • Loading branch information
matthewdouglas committed Jan 28, 2025
1 parent 8cd7793 commit 6268912
Showing 1 changed file with 141 additions and 0 deletions.
141 changes: 141 additions & 0 deletions bitsandbytes/_ops.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,141 @@
import ctypes as ct
from math import prod
from typing import Optional

import torch

from .cextension import lib
from .functional import CUBLAS_Context, _cuda_device_of, _get_tensor_stream, get_ptr, is_on_gpu

_IS_TORCH_GTE_24 = False

if hasattr(torch.library, "register_fake"):
_IS_TORCH_GTE_24 = True
register_fake = torch.library.register_fake
register_kernel = torch.library.register_kernel
else:
# PyTorch <= 2.3
register_fake = torch.library.impl_abstract
register_kernel = torch.library.impl

# Define op
# TODO: mutable output arg as alias of return can be challenging;
# consider a separate op without aliased return:
# int8_linear_matmul_out(
# Tensor A, Tensor B, Tensor out, ScalarType dtype=int32
# ) -> None
torch.library.define(
"bitsandbytes::int8_linear_matmul",
"(Tensor A, Tensor B, Tensor(a!)? out=None, ScalarType dtype=int32) -> Tensor(a!)",
)


# Fake/abstract op
@register_fake("bitsandbytes::int8_linear_matmul")
def _(A: torch.Tensor, B: torch.Tensor, out: Optional[torch.Tensor] = None, dtype=torch.int32):
shapeC = (*A.shape[:-1], B.shape[0])
if out is None:
return torch.empty(shapeC, device=A.device, dtype=dtype)
return out


# CPU implementation
@register_kernel("bitsandbytes::int8_linear_matmul", "cpu")
def _(A: torch.Tensor, B: torch.Tensor, out: Optional[torch.Tensor] = None, dtype=torch.int32):
# Naive implementation: perform matmul in fp32
result = torch.matmul(A.float(), B.float().t()).to(torch.int32)
if out is not None:
result = out.copy_(result)
return result


# MPS impl
@register_kernel("bitsandbytes::int8_linear_matmul", "mps")
def _(A: torch.Tensor, B: torch.Tensor, out: Optional[torch.Tensor] = None, dtype=torch.int32):
pass


# XPU impl
@register_kernel("bitsandbytes::int8_linear_matmul", "xpu")
def _(A: torch.Tensor, B: torch.Tensor, out: Optional[torch.Tensor] = None, dtype=torch.int32):
pass


# Ascend NPU impl
@register_kernel("bitsandbytes::int8_linear_matmul", "npu")
def _(A: torch.Tensor, B: torch.Tensor, out: Optional[torch.Tensor] = None, dtype=torch.int32):
pass


# CUDA/ROCm impl
@register_kernel("bitsandbytes::int8_linear_matmul", "cuda")
def _(A: torch.Tensor, B: torch.Tensor, out: Optional[torch.Tensor] = None, dtype=torch.int32):
A, B = B, A

shapeA = A.shape
shapeB = B.shape

assert A.dtype == torch.int8
assert B.dtype == torch.int8
assert A.ndim == 2, "Only two dimensional matrices are supported for argument B"
assert B.ndim in [2, 3], "Only two or three dimensional matrices are supported for argument A"
assert prod(shapeB) > 0, f"Input tensor dimensions need to be > 0: {shapeB}"
assert out is None or out.dtype == dtype

shapeC = (*shapeB[:-1], shapeA[0])

k, m = shapeA
n = prod(shapeB[:-1])
lda = shapeA[-1] # Weights (outputs, inputs)
ldb = shapeB[-1] # Activations (batch, tokens, inputs)
ldc = shapeC[-1] # Output (batch, tokens, outputs)

assert (
lda == ldb
), f"int8_linear_matmul only supports B^T @ A. Inner dimensions do not match: B @ A = {shapeB} @ {shapeA}"

# cuBLASLt does not support int8 matmul with inner dimensions that are not divisible by 4.
# We'll fall back to a slower fp32 calculation in this circumstance.
# Fortunately, this should not be very common.
if lda % 4 != 0:
result = torch.matmul(B.float(), A.float().t()).to(torch.int32)
if out is not None:
result = out.copy_(result)
return result

if out is None:
out = torch.empty(shapeC, device=A.device, dtype=dtype)

is_on_gpu([A, B, out])

with _cuda_device_of(A):
ctx = CUBLAS_Context.get_instance().get_context(A.device)
ptrA = get_ptr(A)
ptrB = get_ptr(B)
ptrC = get_ptr(out)
ptrRowScale = None
m = ct.c_int32(m)
n = ct.c_int32(n)
k = ct.c_int32(k)
lda = ct.c_int32(lda)
ldb = ct.c_int32(ldb)
ldc = ct.c_int32(ldc)
stream = _get_tensor_stream(A)

if dtype == torch.int32:
has_error = lib.cigemmlt_32(ctx, m, n, k, ptrA, ptrB, ptrC, ptrRowScale, lda, ldb, ldc, stream)
else:
has_error = lib.cigemmlt_8(ctx, m, n, k, ptrA, ptrB, ptrC, ptrRowScale, lda, ldb, ldc, stream)

if has_error == 100: # `ERR_NOT_IMPLEMENTED` is defined as 100 in `ops.cu`
raise NotImplementedError("int8_linear_matmul not implemented!")

if has_error:
raise RuntimeError(
f"cublasLt ran into an error!\n"
f"\t{shapeA=}, {shapeB=}, {shapeC=}\n"
f"\t{(lda, ldb, ldc)=}\n"
f"\t{(m, n, k)=}"
)

return out

0 comments on commit 6268912

Please sign in to comment.