Skip to content

Commit

Permalink
Remove unused imports, fix NotImplementedError
Browse files Browse the repository at this point in the history
  • Loading branch information
mryab committed Jun 30, 2022
1 parent 4e60e7d commit 33efe4a
Show file tree
Hide file tree
Showing 9 changed files with 14 additions and 26 deletions.
6 changes: 3 additions & 3 deletions bitsandbytes/functional.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,13 +2,13 @@
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import ctypes as ct
import os
import random
import math
import ctypes as ct
from typing import Tuple

import torch
from torch import Tensor
from typing import Tuple

lib = ct.cdll.LoadLibrary(os.path.dirname(__file__) + '/libbitsandbytes.so')
name2qmap = {}
Expand Down
1 change: 0 additions & 1 deletion bitsandbytes/nn/modules.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,6 @@
from typing import Optional

from torch import Tensor
from torch.nn.parameter import Parameter
import torch.nn.functional as F

from bitsandbytes.optim import GlobalOptimManager
Expand Down
3 changes: 0 additions & 3 deletions bitsandbytes/optim/adagrad.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,11 +2,8 @@
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
from bitsandbytes.optim.optimizer import Optimizer1State

torch.optim.Adagrad

class Adagrad(Optimizer1State):
def __init__(self, params, lr=1e-2, lr_decay=0, weight_decay=0, initial_accumulator_value=0, eps=1e-10,
optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True):
Expand Down
2 changes: 0 additions & 2 deletions bitsandbytes/optim/adamw.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,9 +2,7 @@
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
from bitsandbytes.optim.optimizer import Optimizer2State
import bitsandbytes.functional as F

class AdamW(Optimizer2State):
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
Expand Down
6 changes: 3 additions & 3 deletions bitsandbytes/optim/lars.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ def __init__(self, params, lr, momentum=0, dampening=0,
weight_decay=0, nesterov=False, optim_bits=32, args=None,
min_8bit_size=4096, percentile_clipping=100, max_unorm=0.02):
if momentum == 0:
raise NotImplementError(f'LARS without momentum is not supported!')
raise NotImplementedError(f'LARS without momentum is not supported!')
super(LARS, self).__init__('lars', params, lr, (momentum, dampening), 0.0,
weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, max_unorm=max_unorm, block_wise=False)

Expand All @@ -21,7 +21,7 @@ def __init__(self, params, lr, momentum=0, dampening=0,
weight_decay=0, nesterov=False, args=None,
min_8bit_size=4096, percentile_clipping=100, max_unorm=0.02):
if momentum == 0:
raise NotImplementError(f'LARS without momentum is not supported!')
raise NotImplementedError(f'LARS without momentum is not supported!')
super(LARS8bit, self).__init__('lars', params, lr, (momentum, dampening), 0.0,
weight_decay, 8, args, min_8bit_size, percentile_clipping, max_unorm=max_unorm, block_wise=False)

Expand All @@ -30,7 +30,7 @@ def __init__(self, params, lr, momentum=0, dampening=0,
weight_decay=0, nesterov=False, args=None,
min_8bit_size=4096, percentile_clipping=100, max_unorm=0.02):
if momentum == 0:
raise NotImplementError(f'LARS without momentum is not supported!')
raise NotImplementedError(f'LARS without momentum is not supported!')
super(LARS32bit, self).__init__('lars', params, lr, (momentum, dampening), 0.0,
weight_decay, 32, args, min_8bit_size, percentile_clipping, max_unorm=max_unorm, block_wise=False)

Expand Down
11 changes: 5 additions & 6 deletions bitsandbytes/optim/rmsprop.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,26 +2,25 @@
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
from bitsandbytes.optim.optimizer import Optimizer1State

class RMSprop(Optimizer1State):
def __init__(self, params, lr=1e-2, alpha=0.99, eps=1e-8, weight_decay=0, momentum=0, centered=False, optim_bits=32, args=None,
min_8bit_size=4096, percentile_clipping=100, block_wise=True):
if alpha == 0:
raise NotImplementError(f'RMSprop with alpha==0.0 is not supported!')
raise NotImplementedError(f'RMSprop with alpha==0.0 is not supported!')
if centered:
raise NotImplementError(f'Centered RMSprop is not supported!')
raise NotImplementedError(f'Centered RMSprop is not supported!')
super(RMSprop, self).__init__('rmsprop', params, lr, (alpha, momentum), eps,
weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise)

class RMSprop8bit(Optimizer1State):
def __init__(self, params, lr=1e-2, alpha=0.99, eps=1e-8, weight_decay=0, momentum=0, centered=False, args=None,
min_8bit_size=4096, percentile_clipping=100, block_wise=True):
if alpha == 0:
raise NotImplementError(f'RMSprop with alpha==0.0 is not supported!')
raise NotImplementedError(f'RMSprop with alpha==0.0 is not supported!')
if centered:
raise NotImplementError(f'Centered RMSprop is not supported!')
raise NotImplementedError(f'Centered RMSprop is not supported!')
super(RMSprop8bit, self).__init__('rmsprop', params, lr, (alpha, momentum), eps,
weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise)

Expand All @@ -30,7 +29,7 @@ def __init__(self, params, lr=1e-2, alpha=0.99, eps=1e-8, weight_decay=0, moment
min_8bit_size=4096, percentile_clipping=100, block_wise=True):

if alpha == 0:
raise NotImplementError(f'RMSprop with alpha==0.0 is not supported!')
raise NotImplementedError(f'RMSprop with alpha==0.0 is not supported!')
if centered:
raise NotImplementError(f'Centered RMSprop is not supported!')
super(RMSprop32bit, self).__init__('rmsprop', params, lr, (alpha, momentum), eps,
Expand Down
6 changes: 3 additions & 3 deletions bitsandbytes/optim/sgd.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ def __init__(self, params, lr, momentum=0, dampening=0,
weight_decay=0, nesterov=False, optim_bits=32, args=None,
min_8bit_size=4096, percentile_clipping=100, block_wise=True):
if momentum == 0:
raise NotImplementError(f'SGD without momentum is not supported!')
raise NotImplementedError(f'SGD without momentum is not supported!')
super(SGD, self).__init__('momentum', params, lr, (momentum, dampening), 0.0,
weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise)

Expand All @@ -18,7 +18,7 @@ def __init__(self, params, lr, momentum=0, dampening=0,
weight_decay=0, nesterov=False, args=None,
min_8bit_size=4096, percentile_clipping=100, block_wise=True):
if momentum == 0:
raise NotImplementError(f'SGD without momentum is not supported!')
raise NotImplementedError(f'SGD without momentum is not supported!')
super(SGD8bit, self).__init__('momentum', params, lr, (momentum, dampening), 0.0,
weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise)

Expand All @@ -27,6 +27,6 @@ def __init__(self, params, lr, momentum=0, dampening=0,
weight_decay=0, nesterov=False, args=None,
min_8bit_size=4096, percentile_clipping=100, block_wise=True):
if momentum == 0:
raise NotImplementError(f'SGD without momentum is not supported!')
raise NotImplementedError(f'SGD without momentum is not supported!')
super(SGD32bit, self).__init__('momentum', params, lr, (momentum, dampening), 0.0,
weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise)
4 changes: 0 additions & 4 deletions tests/test_modules.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,10 +6,6 @@
import torch
import bitsandbytes as bnb

from itertools import product

from bitsandbytes import functional as F


@pytest.mark.parametrize("embcls", [bnb.nn.Embedding, bnb.nn.StableEmbedding], ids=['Embedding', 'StableEmbedding'])
def test_embeddings(embcls):
Expand Down
1 change: 0 additions & 1 deletion tests/test_optim.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,6 @@
import shutil
import uuid
import pytest
import ctypes
import torch
import bitsandbytes as bnb
import bitsandbytes.functional as F
Expand Down

0 comments on commit 33efe4a

Please sign in to comment.