Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Changing HW2 to work without starting processes #24

Open
wants to merge 3 commits into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
54 changes: 22 additions & 32 deletions hw2/train_pg_f18.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,6 @@
import os
import time
import inspect
from multiprocessing import Process

#============================================================================================#
# Utilities
Expand Down Expand Up @@ -81,6 +80,9 @@ def init_tf_sess(self):
self.sess.__enter__() # equivalent to `with self.sess:`
tf.global_variables_initializer().run() #pylint: disable=E1101

def close_tf_sess(self):
self.sess.__exit__(None, None, None)
tf.reset_default_graph()
#========================================================================================#
# ----------PROBLEM 2----------
#========================================================================================#
Expand Down Expand Up @@ -629,6 +631,7 @@ def train_PG(
logz.dump_tabular()
logz.pickle_tf_vars()

agent.close_tf_sess()

def main():
import argparse
Expand Down Expand Up @@ -659,41 +662,28 @@ def main():

max_path_length = args.ep_len if args.ep_len > 0 else None

processes = []

for e in range(args.n_experiments):
seed = args.seed + 10*e
print('Running experiment with seed %d'%seed)

def train_func():
train_PG(
exp_name=args.exp_name,
env_name=args.env_name,
n_iter=args.n_iter,
gamma=args.discount,
min_timesteps_per_batch=args.batch_size,
max_path_length=max_path_length,
learning_rate=args.learning_rate,
reward_to_go=args.reward_to_go,
animate=args.render,
logdir=os.path.join(logdir,'%d'%seed),
normalize_advantages=not(args.dont_normalize_advantages),
nn_baseline=args.nn_baseline,
seed=seed,
n_layers=args.n_layers,
size=args.size
)
# # Awkward hacky process runs, because Tensorflow does not like
# # repeatedly calling train_PG in the same thread.
p = Process(target=train_func, args=tuple())
p.start()
processes.append(p)
# if you comment in the line below, then the loop will block
# until this process finishes
# p.join()

for p in processes:
p.join()

train_PG(
exp_name=args.exp_name,
env_name=args.env_name,
n_iter=args.n_iter,
gamma=args.discount,
min_timesteps_per_batch=args.batch_size,
max_path_length=max_path_length,
learning_rate=args.learning_rate,
reward_to_go=args.reward_to_go,
animate=args.render,
logdir=os.path.join(logdir,'%d'%seed),
normalize_advantages=not(args.dont_normalize_advantages),
nn_baseline=args.nn_baseline,
seed=seed,
n_layers=args.n_layers,
size=args.size
)

if __name__ == "__main__":
main()