Skip to content

Commit

Permalink
Add factorization of polynomials over algebraic number fields
Browse files Browse the repository at this point in the history
  • Loading branch information
benruijl committed Jul 9, 2024
1 parent 3b5a2b0 commit 2b65d8b
Show file tree
Hide file tree
Showing 2 changed files with 190 additions and 4 deletions.
86 changes: 85 additions & 1 deletion src/domains/algebraic_number.rs
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,10 @@ use rand::Rng;
use crate::{
coefficient::ConvertToRing,
combinatorics::CombinationIterator,
poly::{factor::Factorize, gcd::PolynomialGCD, polynomial::MultivariatePolynomial, Variable},
poly::{
factor::Factorize, gcd::PolynomialGCD, polynomial::MultivariatePolynomial, Exponent,
Variable,
},
printer::PolynomialPrinter,
};

Expand Down Expand Up @@ -541,6 +544,69 @@ impl<R: Field + PolynomialGCD<u16>> Field for AlgebraicExtension<R> {
}
}

impl<R: Field + PolynomialGCD<E>, E: Exponent> MultivariatePolynomial<AlgebraicExtension<R>, E> {
/// Get the norm of a non-constant square-free polynomial `f` in the algebraic number field.
pub fn norm(&self) -> MultivariatePolynomial<R, E> {
self.norm_impl().2
}

/// Get the norm of a non-constant square-free polynomial `f` in the algebraic number field.
/// Returns `(v, s, g, r)` where `v` is the shifted variable, `s` is the number of steps,
/// `g` is the shifted polynomial and `r` is the norm.
pub(crate) fn norm_impl(
&self,
) -> (
usize,
usize,
MultivariatePolynomial<R, E>,
MultivariatePolynomial<R, E>,
) {
assert!(!self.is_constant());

let f = self.from_number_field();

let alpha = f
.get_vars()
.iter()
.position(|x| x == &self.field.poly.variables[0])
.unwrap();

let mut poly = f.zero();
let mut exp = vec![E::zero(); f.nvars()];
for x in self.field.poly.into_iter() {
exp[alpha] = E::from_u32(x.exponents[0] as u32);
poly.append_monomial(x.coefficient.clone(), &exp);
}

let poly_uni = poly.to_univariate(alpha);

let mut s = 0;
loop {
let mut g_multi = f.clone();
for v in 0..f.nvars() {
if v == alpha || f.degree(v) == E::zero() {
continue;
}

let g_uni = g_multi.to_univariate(alpha);

let r = g_uni.resultant_prs(&poly_uni);

let d = r.derivative(v);
if r.gcd(&d).is_constant() {
return (v, s, g_multi, r);
}

let alpha_poly = g_multi.variable(&self.get_vars_ref()[v]).unwrap()
- g_multi.variable(&self.field.poly.variables[0]).unwrap();

g_multi = g_multi.replace_with_poly(v, &alpha_poly);
s += 1;
}
}
}
}

#[cfg(test)]
mod tests {
use crate::atom::Atom;
Expand Down Expand Up @@ -581,4 +647,22 @@ mod tests {
}
}
}

#[test]
fn norm() {
let a = Atom::parse("z^4+z^3+(2+a-a^2)z^2+(1+a^2-2a^3)z-2")
.unwrap()
.to_polynomial::<_, u8>(&Q, None);
let f = Atom::parse("a^4-3")
.unwrap()
.to_polynomial::<_, u16>(&Q, None);
let f = AlgebraicExtension::new(f);
let norm = a.to_number_field(&f).norm();

let res = Atom::parse("16-32*z-64*z^2-64*z^3-52*z^4-40*z^5-132*z^6-24*z^7-50*z^8+120*z^9+66*z^10+92*z^11+47*z^12+32*z^13+14*z^14+4*z^15+z^16")
.unwrap()
.to_polynomial::<_, u8>(&Q, a.variables.clone().into());

assert_eq!(norm, res);
}
}
108 changes: 105 additions & 3 deletions src/poly/factor.rs
Original file line number Diff line number Diff line change
Expand Up @@ -405,6 +405,80 @@ impl<E: Exponent> Factorize for MultivariatePolynomial<RationalField, E, LexOrde
}
}

impl<E: Exponent> Factorize
for MultivariatePolynomial<AlgebraicExtension<RationalField>, E, LexOrder>
{
fn square_free_factorization(&self) -> Vec<(Self, usize)> {
if self.is_zero() {
return vec![];
}

let c = self.content();
let stripped = self.clone().div_coeff(&c);

let mut factors = vec![];

if !self.field.is_one(&c) {
factors.push((self.constant(c), 1));
}

let fs = stripped.factor_separable();

for f in fs {
let mut nf = f.square_free_factorization_0_char();
factors.append(&mut nf);
}

if factors.is_empty() {
factors.push((self.one(), 1))
}

factors
}

/// Perform Trager's algorithm for factorization.
fn factor(&self) -> Vec<(Self, usize)> {
let sf = self.square_free_factorization();

let mut full_factors = vec![];
for (f, p) in &sf {
let (v, s, g, n) = f.norm_impl();

let factors = n.factor();

if factors.len() == 1 {
return vec![(f.clone(), 1)];
}

let mut g_f = g.to_number_field(&self.field);

for (f, b) in factors {
debug!("Rational factor {}", f);
let alpha_poly = g.variable(&self.get_vars_ref()[v]).unwrap()
+ g.variable(&self.field.poly().variables[0]).unwrap()
* &g.constant((s as u64).into());

let f = f.to_number_field(&self.field);

let gcd = f.gcd(&g_f);

g_f = g_f / &gcd;

let g = MultivariatePolynomial::from_number_field(&gcd)
.replace_with_poly(v, &alpha_poly);
full_factors.push((g.to_number_field(&self.field), b * p));
}
}

full_factors
}

fn is_irreducible(&self) -> bool {
// TODO: improve
self.factor().len() == 1
}
}

impl<
UField: FiniteFieldWorkspace,
F: GaloisField<Base = FiniteField<UField>> + PolynomialGCD<E>,
Expand Down Expand Up @@ -752,7 +826,7 @@ where
for i in 0..2 * d {
let r = self
.field
.nth(rng.gen_range(0..self.field.characteristic().to_u64()));
.sample(&mut rng, (0, self.field.characteristic().to_u64() as i64));
if !F::is_zero(&r) {
exp[var] = E::from_u32(i as u32);
random_poly.append_monomial(r, &exp);
Expand All @@ -770,8 +844,6 @@ where
break g;
}

// TODO: use Frobenius map and modular composition to prevent computing large exponent poly^(p^d)
let p: Integer = self.field.size().to_u64().into();
let b = if self.field.characteristic() == 2.into() {
let max = self.field.get_extension_degree() as usize * d;

Expand All @@ -785,6 +857,8 @@ where

b
} else {
// TODO: use Frobenius map and modular composition to prevent computing large exponent poly^(p^d)
let p = self.field.size();
random_poly
.exp_mod_univariate(&(&p.pow(d as u64) - &1i64.into()) / &2i64.into(), &mut s)
- self.one()
Expand Down Expand Up @@ -3293,8 +3367,10 @@ mod test {
use crate::{
atom::Atom,
domains::{
algebraic_number::AlgebraicExtension,
finite_field::{Zp, Z2},
integer::Z,
rational::Q,
},
poly::factor::Factorize,
};
Expand Down Expand Up @@ -3532,4 +3608,30 @@ mod test {

assert_eq!(a.factor().len(), 2)
}

#[test]
fn algebraic_extension() {
let a = Atom::parse("z^4+z^3+(2+a-a^2)z^2+(1+a^2-2a^3)z-2")
.unwrap()
.to_polynomial::<_, u8>(&Q, None);
let f = Atom::parse("a^4-3")
.unwrap()
.to_polynomial::<_, u16>(&Q, None);
let f = AlgebraicExtension::new(f);

let mut factors = a.to_number_field(&f).factor();

let f1 = Atom::parse("(1-a^2)+(1-a)*z+z^2")
.unwrap()
.to_polynomial::<_, u8>(&Q, a.get_vars().clone().into())
.to_number_field(&f);
let f2 = Atom::parse("(1+a^2)+(a)*z+z^2")
.unwrap()
.to_polynomial::<_, u8>(&Q, a.get_vars().clone().into())
.to_number_field(&f);

factors.sort_by(|a, b| a.partial_cmp(&b).unwrap());

assert_eq!(factors, vec![(f1, 1), (f2, 1)])
}
}

0 comments on commit 2b65d8b

Please sign in to comment.