-
Notifications
You must be signed in to change notification settings - Fork 173
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
chore: extract math_funcs expressions to folders based on spark group…
…ing (#1219) * extract math_funcs expressions to folders based on spark grouping * fix merge conflicts and move chr to `string_funcs`
- Loading branch information
Showing
21 changed files
with
661 additions
and
589 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,83 @@ | ||
// Licensed to the Apache Software Foundation (ASF) under one | ||
// or more contributor license agreements. See the NOTICE file | ||
// distributed with this work for additional information | ||
// regarding copyright ownership. The ASF licenses this file | ||
// to you under the Apache License, Version 2.0 (the | ||
// "License"); you may not use this file except in compliance | ||
// with the License. You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, | ||
// software distributed under the License is distributed on an | ||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
// KIND, either express or implied. See the License for the | ||
// specific language governing permissions and limitations | ||
// under the License. | ||
|
||
use crate::downcast_compute_op; | ||
use crate::math_funcs::utils::{get_precision_scale, make_decimal_array, make_decimal_scalar}; | ||
use arrow::array::{Float32Array, Float64Array, Int64Array}; | ||
use arrow_array::{Array, ArrowNativeTypeOp}; | ||
use arrow_schema::DataType; | ||
use datafusion::physical_plan::ColumnarValue; | ||
use datafusion_common::{DataFusionError, ScalarValue}; | ||
use num::integer::div_ceil; | ||
use std::sync::Arc; | ||
|
||
/// `ceil` function that simulates Spark `ceil` expression | ||
pub fn spark_ceil( | ||
args: &[ColumnarValue], | ||
data_type: &DataType, | ||
) -> Result<ColumnarValue, DataFusionError> { | ||
let value = &args[0]; | ||
match value { | ||
ColumnarValue::Array(array) => match array.data_type() { | ||
DataType::Float32 => { | ||
let result = downcast_compute_op!(array, "ceil", ceil, Float32Array, Int64Array); | ||
Ok(ColumnarValue::Array(result?)) | ||
} | ||
DataType::Float64 => { | ||
let result = downcast_compute_op!(array, "ceil", ceil, Float64Array, Int64Array); | ||
Ok(ColumnarValue::Array(result?)) | ||
} | ||
DataType::Int64 => { | ||
let result = array.as_any().downcast_ref::<Int64Array>().unwrap(); | ||
Ok(ColumnarValue::Array(Arc::new(result.clone()))) | ||
} | ||
DataType::Decimal128(_, scale) if *scale > 0 => { | ||
let f = decimal_ceil_f(scale); | ||
let (precision, scale) = get_precision_scale(data_type); | ||
make_decimal_array(array, precision, scale, &f) | ||
} | ||
other => Err(DataFusionError::Internal(format!( | ||
"Unsupported data type {:?} for function ceil", | ||
other, | ||
))), | ||
}, | ||
ColumnarValue::Scalar(a) => match a { | ||
ScalarValue::Float32(a) => Ok(ColumnarValue::Scalar(ScalarValue::Int64( | ||
a.map(|x| x.ceil() as i64), | ||
))), | ||
ScalarValue::Float64(a) => Ok(ColumnarValue::Scalar(ScalarValue::Int64( | ||
a.map(|x| x.ceil() as i64), | ||
))), | ||
ScalarValue::Int64(a) => Ok(ColumnarValue::Scalar(ScalarValue::Int64(a.map(|x| x)))), | ||
ScalarValue::Decimal128(a, _, scale) if *scale > 0 => { | ||
let f = decimal_ceil_f(scale); | ||
let (precision, scale) = get_precision_scale(data_type); | ||
make_decimal_scalar(a, precision, scale, &f) | ||
} | ||
_ => Err(DataFusionError::Internal(format!( | ||
"Unsupported data type {:?} for function ceil", | ||
value.data_type(), | ||
))), | ||
}, | ||
} | ||
} | ||
|
||
#[inline] | ||
fn decimal_ceil_f(scale: &i8) -> impl Fn(i128) -> i128 { | ||
let div = 10_i128.pow_wrapping(*scale as u32); | ||
move |x: i128| div_ceil(x, div) | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,92 @@ | ||
// Licensed to the Apache Software Foundation (ASF) under one | ||
// or more contributor license agreements. See the NOTICE file | ||
// distributed with this work for additional information | ||
// regarding copyright ownership. The ASF licenses this file | ||
// to you under the Apache License, Version 2.0 (the | ||
// "License"); you may not use this file except in compliance | ||
// with the License. You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, | ||
// software distributed under the License is distributed on an | ||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
// KIND, either express or implied. See the License for the | ||
// specific language governing permissions and limitations | ||
// under the License. | ||
|
||
use crate::math_funcs::utils::get_precision_scale; | ||
use arrow::{ | ||
array::{ArrayRef, AsArray}, | ||
datatypes::Decimal128Type, | ||
}; | ||
use arrow_array::{Array, Decimal128Array}; | ||
use arrow_schema::{DataType, DECIMAL128_MAX_PRECISION}; | ||
use datafusion::physical_plan::ColumnarValue; | ||
use datafusion_common::DataFusionError; | ||
use num::{BigInt, Signed, ToPrimitive}; | ||
use std::sync::Arc; | ||
|
||
// Let Decimal(p3, s3) as return type i.e. Decimal(p1, s1) / Decimal(p2, s2) = Decimal(p3, s3). | ||
// Conversely, Decimal(p1, s1) = Decimal(p2, s2) * Decimal(p3, s3). This means that, in order to | ||
// get enough scale that matches with Spark behavior, it requires to widen s1 to s2 + s3 + 1. Since | ||
// both s2 and s3 are 38 at max., s1 is 77 at max. DataFusion division cannot handle such scale > | ||
// Decimal256Type::MAX_SCALE. Therefore, we need to implement this decimal division using BigInt. | ||
pub fn spark_decimal_div( | ||
args: &[ColumnarValue], | ||
data_type: &DataType, | ||
) -> Result<ColumnarValue, DataFusionError> { | ||
let left = &args[0]; | ||
let right = &args[1]; | ||
let (p3, s3) = get_precision_scale(data_type); | ||
|
||
let (left, right): (ArrayRef, ArrayRef) = match (left, right) { | ||
(ColumnarValue::Array(l), ColumnarValue::Array(r)) => (Arc::clone(l), Arc::clone(r)), | ||
(ColumnarValue::Scalar(l), ColumnarValue::Array(r)) => { | ||
(l.to_array_of_size(r.len())?, Arc::clone(r)) | ||
} | ||
(ColumnarValue::Array(l), ColumnarValue::Scalar(r)) => { | ||
(Arc::clone(l), r.to_array_of_size(l.len())?) | ||
} | ||
(ColumnarValue::Scalar(l), ColumnarValue::Scalar(r)) => (l.to_array()?, r.to_array()?), | ||
}; | ||
let left = left.as_primitive::<Decimal128Type>(); | ||
let right = right.as_primitive::<Decimal128Type>(); | ||
let (p1, s1) = get_precision_scale(left.data_type()); | ||
let (p2, s2) = get_precision_scale(right.data_type()); | ||
|
||
let l_exp = ((s2 + s3 + 1) as u32).saturating_sub(s1 as u32); | ||
let r_exp = (s1 as u32).saturating_sub((s2 + s3 + 1) as u32); | ||
let result: Decimal128Array = if p1 as u32 + l_exp > DECIMAL128_MAX_PRECISION as u32 | ||
|| p2 as u32 + r_exp > DECIMAL128_MAX_PRECISION as u32 | ||
{ | ||
let ten = BigInt::from(10); | ||
let l_mul = ten.pow(l_exp); | ||
let r_mul = ten.pow(r_exp); | ||
let five = BigInt::from(5); | ||
let zero = BigInt::from(0); | ||
arrow::compute::kernels::arity::binary(left, right, |l, r| { | ||
let l = BigInt::from(l) * &l_mul; | ||
let r = BigInt::from(r) * &r_mul; | ||
let div = if r.eq(&zero) { zero.clone() } else { &l / &r }; | ||
let res = if div.is_negative() { | ||
div - &five | ||
} else { | ||
div + &five | ||
} / &ten; | ||
res.to_i128().unwrap_or(i128::MAX) | ||
})? | ||
} else { | ||
let l_mul = 10_i128.pow(l_exp); | ||
let r_mul = 10_i128.pow(r_exp); | ||
arrow::compute::kernels::arity::binary(left, right, |l, r| { | ||
let l = l * l_mul; | ||
let r = r * r_mul; | ||
let div = if r == 0 { 0 } else { l / r }; | ||
let res = if div.is_negative() { div - 5 } else { div + 5 } / 10; | ||
res.to_i128().unwrap_or(i128::MAX) | ||
})? | ||
}; | ||
let result = result.with_data_type(DataType::Decimal128(p3, s3)); | ||
Ok(ColumnarValue::Array(Arc::new(result))) | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,83 @@ | ||
// Licensed to the Apache Software Foundation (ASF) under one | ||
// or more contributor license agreements. See the NOTICE file | ||
// distributed with this work for additional information | ||
// regarding copyright ownership. The ASF licenses this file | ||
// to you under the Apache License, Version 2.0 (the | ||
// "License"); you may not use this file except in compliance | ||
// with the License. You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, | ||
// software distributed under the License is distributed on an | ||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
// KIND, either express or implied. See the License for the | ||
// specific language governing permissions and limitations | ||
// under the License. | ||
|
||
use crate::downcast_compute_op; | ||
use crate::math_funcs::utils::{get_precision_scale, make_decimal_array, make_decimal_scalar}; | ||
use arrow::array::{Float32Array, Float64Array, Int64Array}; | ||
use arrow_array::{Array, ArrowNativeTypeOp}; | ||
use arrow_schema::DataType; | ||
use datafusion::physical_plan::ColumnarValue; | ||
use datafusion_common::{DataFusionError, ScalarValue}; | ||
use num::integer::div_floor; | ||
use std::sync::Arc; | ||
|
||
/// `floor` function that simulates Spark `floor` expression | ||
pub fn spark_floor( | ||
args: &[ColumnarValue], | ||
data_type: &DataType, | ||
) -> Result<ColumnarValue, DataFusionError> { | ||
let value = &args[0]; | ||
match value { | ||
ColumnarValue::Array(array) => match array.data_type() { | ||
DataType::Float32 => { | ||
let result = downcast_compute_op!(array, "floor", floor, Float32Array, Int64Array); | ||
Ok(ColumnarValue::Array(result?)) | ||
} | ||
DataType::Float64 => { | ||
let result = downcast_compute_op!(array, "floor", floor, Float64Array, Int64Array); | ||
Ok(ColumnarValue::Array(result?)) | ||
} | ||
DataType::Int64 => { | ||
let result = array.as_any().downcast_ref::<Int64Array>().unwrap(); | ||
Ok(ColumnarValue::Array(Arc::new(result.clone()))) | ||
} | ||
DataType::Decimal128(_, scale) if *scale > 0 => { | ||
let f = decimal_floor_f(scale); | ||
let (precision, scale) = get_precision_scale(data_type); | ||
make_decimal_array(array, precision, scale, &f) | ||
} | ||
other => Err(DataFusionError::Internal(format!( | ||
"Unsupported data type {:?} for function floor", | ||
other, | ||
))), | ||
}, | ||
ColumnarValue::Scalar(a) => match a { | ||
ScalarValue::Float32(a) => Ok(ColumnarValue::Scalar(ScalarValue::Int64( | ||
a.map(|x| x.floor() as i64), | ||
))), | ||
ScalarValue::Float64(a) => Ok(ColumnarValue::Scalar(ScalarValue::Int64( | ||
a.map(|x| x.floor() as i64), | ||
))), | ||
ScalarValue::Int64(a) => Ok(ColumnarValue::Scalar(ScalarValue::Int64(a.map(|x| x)))), | ||
ScalarValue::Decimal128(a, _, scale) if *scale > 0 => { | ||
let f = decimal_floor_f(scale); | ||
let (precision, scale) = get_precision_scale(data_type); | ||
make_decimal_scalar(a, precision, scale, &f) | ||
} | ||
_ => Err(DataFusionError::Internal(format!( | ||
"Unsupported data type {:?} for function floor", | ||
value.data_type(), | ||
))), | ||
}, | ||
} | ||
} | ||
|
||
#[inline] | ||
fn decimal_floor_f(scale: &i8) -> impl Fn(i128) -> i128 { | ||
let div = 10_i128.pow_wrapping(*scale as u32); | ||
move |x: i128| div_floor(x, div) | ||
} |
File renamed without changes.
File renamed without changes.
Oops, something went wrong.