-
Notifications
You must be signed in to change notification settings - Fork 0
week1
from 2016.05.09
link: https://www.coursera.org/learn/machine-learning
resource: https://share.coursera.org/wiki/index.php/ML:Main
其他有用资源: https://share.coursera.org/wiki/index.php/ML:Useful_Resources
testcase: https://www.coursera.org/learn/machine-learning/discussions/all/threads/0SxufTSrEeWPACIACw4G5w
Tom Mitchell provides a more modern definition: "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."
Example: playing checkers.
- E = the experience of playing many games of checkers
- T = the task of playing checkers.
- P = the probability that the program will win the next game.
入门,什么是机器学习:
- 垃圾邮件处理
- 自然语言处理
- 搜索引擎
-
回归问题. 房屋价格评估, 给定了房屋面积和价格,预测给定的面积对应的价格.
-
分类问题. 肿瘤推测.
-
垃圾邮件分类.
-
根据病人检查结果是否有糖尿病的关系的历史分类, 来判断新病人是否有糖尿病.
Training set.
训练集, 根据训练集
线性回归!!!
- 聚类算法
- social network analysis
- 网页分类
- market segmentation 市场划分
- orgnize computing clusters
- 天文数据分析 Astonomical data analysis
cocktail party problem 鸡尾酒问题算法,分离声音
[w,s,v] = svn((repment(sum(x.*x, 1), size(x, 1), 1).*x) *x');
svn 是什么? 奇异解,解线性方程, 在 octave 里面有直接的函数
octave
在工程上一般都先用octave 进行模拟,建模,这样速度会非常快,会更有效率学习一些机器学习的东西. 等需要实用的时候,再使用c++或者java进行实现.
training set -> learning algorithm
|
v
size of house-> h -> estimated price
h is the hypothesis. h is the maps from x's to y's
h(x) = ø0 + ø1x
hypothosis: 假设
线性回归. 回归问题,通过训练集,来确定.
代价函数,平方差代价函数,求平方误差代价函数的最小值.
代价函数是干什么的