Skip to content

ammarsaf/rapid-tracker

Repository files navigation

Rapid Tracker

  • A monitoring dashboard of RapidKL GTFS real-time API data
  • Data orchestrated through ELT using Dagster, Dbt and Metabase - instantiate with just docker compose!

image

Getting Started

  1. Create virtualenv and install packages
python3 -m venv venvRapid
source venvRapid/bin/activate
pip install -r requirements.txt
  1. Setup container

docker compose up

  1. Dbt path setup
export DBT_PROJECT_DIR=/<project>/<working>/<dbt_directory>
export DBT_PROFILES_DIR=/<project>/<working>/<directory>
  1. Start data orchestration
  • Run with <flow>.from_source(source=<if/local/use/project_path/else/githubrepoURL>).deploy()
prefect server start 
prefect work-pool create --type process my-work-pool # if not yet create, else ignore
prefect worker start --pool "rapid-work-pool"
python deploy.py # get most updated version
prefect deployment run '<flow_function>/<deployment_name>'
  1. Monitor visualization

Data Orchestration Infrastructure


infra

TODO

  • [] Add more data (daily)
  • [] Convert bus density map -> current location map

About

etl with RapidKL GTFS API data monitor

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published