Skip to content

Added LongestPalindromeSubsequence using bottom up approach #9

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
71 changes: 71 additions & 0 deletions src/main/cpp/algorithms/dp/LongestPalindromeSubsequenceTabular.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
/*
* @file LongestPalindromeSubsequence.h
* @author (original JAVA) William Fiset, [email protected]
* (conversion to C++) Armin Zare Zadeh, [email protected]
* @date 14 July 2020
* @version 0.1
* @brief Implementation of finding the longest paldindrome subsequence Time complexity: O(n^2)
*/

#ifndef D_LONGESTPALINDROMSUBSEQUENCETABULAR_H
#define D_LONGESTPALINDROMSUBSEQUENCETABULAR_H

#include <vector>
#include <deque>
#include <list>
#include <set> // set and multiset
#include <map> // map and multimap
#include <unordered_set> // unordered set/multiset
#include <unordered_map> // unordered map/multimap
#include <iterator>
#include <algorithm>
#include <numeric> // some numeric algorithm
#include <functional>
#include <stack>

#include <sstream>
#include <memory>
#include <iostream>
#include <cmath>

namespace dsa {


class LongestPalindromeSubsequenceTabular {
public:
// Returns the length of the longest palindrome subsequence
// Using Bottom up Approach
static int lps(const std::string& s) {
if (s.length() == 0) return 0;
std::vector<std::vector<int>> dp(s.length(), std::vector<int>(s.length(), 0));

for(int l = 1; l <= s.length(); l++) {
for(int i = 0; i <= s.length() - l; i++) {
int j = i + l - 1;
char c1 = s.at(i), c2 = s.at(j);

//extra case for equal indices
if(i == j) dp[i][j] = 1;
//Handle out of bounds using ternary operator
// Both end characters match
else if(c1 == c2) dp[i][j] = 2 + ((i + 1 < s.length() && j > 0) ? dp[i + 1][j - 1] : 0);
// Consider both possible substrings and take the maximum
else dp[i][j] = max((i + 1 < s.length()) ? dp[i + 1][j] : 0, (j > 0) ? dp[i][j - 1] : 0);
}
}

return dp[0][s.length() - 1];
}
};


void LongestPalindromeSubsequenceTabular_test()
{
std::cout << LongestPalindromeSubsequenceTabular::lps("bbbab") << std::endl; // Outputs 4 since "bbbb" is valid soln
std::cout << LongestPalindromeSubsequenceTabular::lps("bccd") << std::endl; // Outputs 2 since "cc" is valid soln
}


} // namespace dsa

#endif /* D_LONGESTPALINDROMSUBSEQUENCETABULAR_H */