-
Notifications
You must be signed in to change notification settings - Fork 156
Prime (and composite) numbers #1228
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
qlbrpl
wants to merge
7
commits into
agda:master
Choose a base branch
from
qlbrpl:master
base: master
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from 2 commits
Commits
Show all changes
7 commits
Select commit
Hold shift + click to select a range
779720e
added Cubical.Data.Nat.Primes
qlbrpl 4b99090
removed commented-out code
qlbrpl 4d5d4ba
removed unused code, made changes according to suggestions
qlbrpl 4fc04fe
added no-eta-equality to isPrime and isComposite
qlbrpl 8cd16b9
cleaned up awfulness
qlbrpl 9642bf5
aesthetic change
qlbrpl 0fca3b5
renamed Split to Count and moved it out of Primes
qlbrpl File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,25 @@ | ||
| {-# OPTIONS --safe #-} | ||
|
|
||
| module Cubical.Data.Nat.Primes.Base where | ||
|
|
||
| open import Cubical.Data.Nat.Primes.Imports | ||
| open import Cubical.Data.Nat.Primes.Lemmas using (1<·1<=3<) | ||
|
|
||
|
|
||
| record isPrime (n : ℕ) : Type where | ||
| constructor prime | ||
qlbrpl marked this conversation as resolved.
Show resolved
Hide resolved
|
||
| field | ||
| n-proper : 1 < n | ||
| primality : ∀ d → d ∣ n → (d ≡ 1) ⊎ (d ≡ n) | ||
|
|
||
| record isComposite (n : ℕ) : Type where | ||
| constructor composite | ||
| field | ||
qlbrpl marked this conversation as resolved.
Show resolved
Hide resolved
|
||
| p q : ℕ | ||
| p-prime : isPrime p | ||
| q-proper : 1 < q | ||
| factors : p · q ≡ n | ||
| least : ∀ z → 1 < z → z ∣ n → p ≤ z | ||
|
|
||
| 3<n : 3 < n | ||
| 3<n = subst (λ x → 3 < x) factors (1<·1<=3< (isPrime.n-proper p-prime) q-proper) | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,52 @@ | ||
| {-# OPTIONS --safe #-} | ||
|
|
||
| module Cubical.Data.Nat.Primes.Concrete where | ||
|
|
||
| open import Cubical.Data.Nat.Primes.Imports | ||
| open import Cubical.Data.Nat.Primes.Lemmas | ||
| open import Cubical.Data.Nat.Primes.Base | ||
| open import Cubical.Data.Empty as ⊥ hiding (elim) | ||
|
|
||
|
|
||
| prime2 : isPrime 2 | ||
| prime2 = prime (0 , refl) primality-2 where | ||
| primality-2 : (d : ℕ) → d ∣ 2 → (d ≡ 1) ⊎ (d ≡ 2) | ||
| primality-2 d d∣2 with (≤-split (m∣n→m≤n snotz d∣2)) | ||
| ... | inr d=2 = inr d=2 | ||
| ... | inl d<2 with <-split d<2 | ||
| ... | inr d=1 = inl d=1 | ||
| ... | inl d<1 = ⊥.rec (¬<1∣sn d 1 d<1 d∣2) | ||
|
|
||
|
|
||
| private | ||
|
|
||
| -- can be used to directly prove primality of a specific number | ||
| notDiv : ∀ d n → Σ[ k ∈ ℕ ] (k · d < n) × (n < suc k · d) → ¬ d ∣ n | ||
| notDiv d n (k , kd<n , n<d+kd) d∣n-trunc | ||
| with d | (∣-untrunc d∣n-trunc) | (fst (∣-untrunc d∣n-trunc) ≟ k) | ||
| ... | d | (c , cd=n) | (eq c=k) = <≠ kd<n (subst (λ x → x · d ≡ n) c=k cd=n) | ||
| ... | 0 | (c , cd=n) | (lt c<k) = ¬-<-zero (subst (λ x → k · 0 < x) | ||
| (sym (cd=n) ∙ sym (0≡m·0 c)) | ||
| kd<n) | ||
| ... | suc d-1 | (c , cd=n) | (lt c<k) = <≠ (lem1 c k d-1 n c<k kd<n) cd=n | ||
| ... | d | (0 , cd=n) | (gt k<c) = ¬-<-zero k<c | ||
| ... | d | (suc c , d+cd=n) | (gt k<sc) with (<-split k<sc) | ||
| ... | inr k=c = <≠ n<d+kd | ||
| (sym (subst (λ x → d + x · d ≡ n) (sym k=c) d+cd=n)) | ||
| ... | inl k<c = <≠ (lem2 c k d n k<c n<d+kd) (sym d+cd=n) | ||
|
|
||
| -- example | ||
| prime5 : isPrime 5 | ||
| prime5 = prime (3 , refl) primality-5 where | ||
| primality-5 : (d : ℕ) → d ∣ 5 → (d ≡ 1) ⊎ (d ≡ 5) | ||
| primality-5 d d∣5 with (≤-split (m∣n→m≤n snotz d∣5)) | ||
| ... | inr d=5 = inr d=5 | ||
| ... | inl d<5 with <-split d<5 | ||
| ... | inr d=4 = ⊥.rec (notDiv 4 5 (1 , (0 , refl) , (2 , refl)) (subst (λ x → x ∣ 5) d=4 d∣5)) | ||
| ... | inl d<4 with <-split d<4 | ||
| ... | inr d=3 = ⊥.rec (notDiv 3 5 (1 , (1 , refl) , (0 , refl)) (subst (λ x → x ∣ 5) d=3 d∣5)) | ||
| ... | inl d<3 with <-split d<3 | ||
| ... | inr d=2 = ⊥.rec (notDiv 2 5 (2 , (0 , refl) , (0 , refl)) (subst (λ x → x ∣ 5) d=2 d∣5)) | ||
| ... | inl d<2 with <-split d<2 | ||
| ... | inr d=1 = inl d=1 | ||
| ... | inl d<1 = ⊥.rec (¬<1∣sn d 4 d<1 d∣5) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,104 @@ | ||
| {-# OPTIONS --safe #-} | ||
|
|
||
| module Cubical.Data.Nat.Primes.DecProps where | ||
|
|
||
| open import Cubical.Data.Nat.Primes.Imports | ||
| open import Cubical.Data.Nat.Primes.Lemmas | ||
| open import Cubical.Data.Nat.Primes.Base | ||
| open import Cubical.Data.Nat.Primes.Factors | ||
| open import Cubical.Data.Empty as ⊥ hiding (elim) | ||
| open import Cubical.Data.Sum.Properties | ||
|
|
||
| open isPrime | ||
| open isComposite | ||
|
|
||
|
|
||
| private | ||
| variable | ||
| ℓ ℓ' : Level | ||
|
|
||
| funcProp : {A : Type ℓ} {B : A → Type ℓ'} → (∀ a → isProp (B a)) → isProp (∀ a → B a) | ||
| funcProp BProp f g = funExt (λ x → BProp x (f x) (g x)) | ||
|
|
||
| PropIso : ∀ {A : Type ℓ} {B : Type ℓ'} → isProp A → isProp B → (A → B) → (B → A) → Iso A B | ||
| PropIso propA propB fun inv = iso fun inv (λ _ → propB _ _) (λ _ → propA _ _) | ||
|
|
||
| primeProp : ∀ n → isProp (isPrime n) | ||
| primeProp n (prime 1<n primality) (prime 1<n' primality') = | ||
| cong₂ prime | ||
| (isProp≤ 1<n 1<n') | ||
| (funcProp (λ x → funcProp (λ x∣n → | ||
| isProp⊎ (isSetℕ x 1) (isSetℕ x n) | ||
| λ x=1 x=n → ¬n<n (subst (λ y → y < n) (sym x=1 ∙ x=n) 1<n) | ||
| )) | ||
| primality primality' ) | ||
|
|
||
| compProp : ∀ n → isProp (isComposite n) | ||
| compProp n (composite p q pp 1<q pq=n least) (composite p' q' pp' 1<q' pq=n' least') = | ||
| λ i → composite | ||
| (p=p' i) | ||
| (q=q' i) | ||
| ((isProp→PathP (λ j → primeProp (p=p' j)) pp pp') i) | ||
| ((isProp→PathP (λ j → isProp≤ {n = q=q' j}) 1<q 1<q') i) | ||
| ((isProp→PathP (λ j → isSetℕ (p=p' j · q=q' j) n) pq=n pq=n') i) | ||
| ((isProp→PathP (λ j → leastProp (p=p' j)) least least') i) | ||
| where | ||
| 1<p : 1 < p | ||
| 1<p = n-proper pp | ||
| 1<p' : 1 < p' | ||
| 1<p' = n-proper pp' | ||
|
|
||
| p∣n : p ∣ n | ||
| p∣n = ∣ (q , ·-comm q p ∙ pq=n) ∣₁ | ||
| p'∣n : p' ∣ n | ||
| p'∣n = ∣ (q' , ·-comm q' p' ∙ pq=n') ∣₁ | ||
|
|
||
| p=p' : p ≡ p' | ||
| p=p' = ≤-antisym (least p' 1<p' p'∣n) (least' p 1<p p∣n) | ||
|
|
||
| q=q' : q ≡ q' | ||
| q=q' = inj-·0< q q' (<-weaken 1<p) (pq=n ∙ sym (subst (λ x → x · q' ≡ n) (sym p=p') pq=n')) | ||
|
|
||
| leastProp : ∀ x → isProp ((p'' : ℕ) → 1 < p'' → p'' ∣ n → x ≤ p'') | ||
| leastProp x = funcProp (λ a → funcProp (λ 1<a → funcProp (λ a∣n → isProp≤))) | ||
|
|
||
| prime→¬comp : ∀ n → isPrime n → ¬ isComposite n | ||
| prime→¬comp n (prime 1<n primality) (composite p q pp 1<q pq=n _) | ||
| with (primality q ∣ (p , pq=n) ∣₁) | ||
| ... | inl q=1 = <≠ 1<q (sym q=1) | ||
| ... | inr q=n = <≠ (PropFac< q p n (n-proper pp) (<-weaken 1<n) (·-comm q p ∙ pq=n)) q=n | ||
|
|
||
| ¬comp→prime : ∀ n → 1 < n → ¬ isComposite n → isPrime n | ||
| ¬comp→prime n 1<n ¬nc with primeOrComp n 1<n | ||
| ... | inl np = np | ||
| ... | inr nc = ⊥.rec (¬nc nc) | ||
|
|
||
| comp→¬prime : ∀ n → isComposite n → ¬ isPrime n | ||
| comp→¬prime n nc np = prime→¬comp n np nc | ||
|
|
||
| ¬prime→comp : ∀ n → 1 < n → ¬ isPrime n → isComposite n | ||
| ¬prime→comp n 1<n ¬np with primeOrComp n 1<n | ||
| ... | inr nc = nc | ||
| ... | inl np = ⊥.rec (¬np np) | ||
|
|
||
| prime≡¬comp : ∀ n → 1 < n → (isPrime n) ≡ (¬ isComposite n) | ||
| prime≡¬comp n 1<n = | ||
| isoToPath (PropIso (primeProp n) (isProp¬ (isComposite n)) (prime→¬comp n) (¬comp→prime n 1<n)) | ||
|
|
||
| comp≡¬prime : ∀ n → 1 < n → (isComposite n) ≡ (¬ isPrime n) | ||
| comp≡¬prime n 1<n = | ||
| isoToPath (PropIso (compProp n) (isProp¬ (isPrime n)) (comp→¬prime n) (¬prime→comp n 1<n)) | ||
|
|
||
| DecPrime : ∀ n → Dec (isPrime n) | ||
| DecPrime 0 = no λ (prime 1<0 _) → ¬-<-zero 1<0 | ||
| DecPrime 1 = no λ (prime 1<1 _) → ¬n<n 1<1 | ||
| DecPrime n@(suc (suc n-2)) with (primeOrComp n (n-2 , +-comm n-2 2)) | ||
| ... | inl np = yes np | ||
| ... | inr nc = no (comp→¬prime n nc) | ||
|
|
||
| DecComp : ∀ n → Dec (isComposite n) | ||
| DecComp 0 = no λ 0c → ¬n<n (<-trans (2 , refl) (isComposite.3<n 0c)) | ||
| DecComp 1 = no λ 1c → ¬n<n (<-trans (1 , refl) (isComposite.3<n 1c)) | ||
| DecComp n@(suc (suc n-2)) with (primeOrComp n (n-2 , +-comm n-2 2)) | ||
| ... | inr nc = yes nc | ||
| ... | inl np = no (prime→¬comp n np) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,109 @@ | ||
| {-# OPTIONS --safe #-} | ||
|
|
||
| module Cubical.Data.Nat.Primes.Factors where | ||
|
|
||
| open import Cubical.Data.Nat.Primes.Imports | ||
| open import Cubical.Data.Nat.Primes.Lemmas | ||
| open import Cubical.Data.Nat.Primes.Base | ||
| open import Cubical.Data.Empty as ⊥ hiding (elim) | ||
|
|
||
|
|
||
| leastFactorIsPrime : ∀ n p → HasFactor n p → (∀ d → HasFactor n d → p ≤ d) → isPrime p | ||
| leastFactorIsPrime _ 0 (1<p , _) _ = ⊥.rec (¬-<-zero 1<p) | ||
| leastFactorIsPrime n p@(suc p-1) (1<p , p∣n) least = prime 1<p primality where | ||
| primality : ∀ (d : ℕ) → d ∣ p → (d ≡ 1) ⊎ (d ≡ p) | ||
| primality zero d∣p = ⊥.rec (¬z∣sn p-1 d∣p) | ||
| primality d@(suc d-1) d∣p with ≤-split (m∣n→m≤n snotz d∣p) | ||
| ... | inr d=p = inr d=p | ||
| ... | inl d<p with (d ≟ 1) | ||
| ... | eq d=1 = inl d=1 | ||
| ... | lt d<1 = ⊥.rec (¬s<1 d<1) | ||
| ... | gt 1<d = ⊥.rec (<-asym d<p (least d (1<d , ∣-trans d∣p p∣n))) | ||
|
|
||
|
|
||
| primeOrComp : ∀ n → 1 < n → (isPrime n) ⊎ (isComposite n) | ||
| primeOrComp zero 1<0 = ⊥.rec (¬-<-zero 1<0) | ||
| primeOrComp n@(suc n-1) 1<n = answer where | ||
|
|
||
| LF : Σ[ p ∈ ℕ ] (HasFactor n p) × (∀ z → (HasFactor n z) → p ≤ z) | ||
| LF = findLeast (1<n , ∣-refl refl) DecHF | ||
|
|
||
| p = LF .fst | ||
| HFnp = LF .snd .fst | ||
| 1<p = HFnp .fst | ||
| p∣n = ∣-untrunc (HFnp .snd) | ||
| q = p∣n .fst | ||
| p≤n = m∣n→m≤n snotz (HFnp .snd) | ||
| pq=n = ·-comm p q ∙ p∣n .snd | ||
|
|
||
| p-least : ∀ z → (HasFactor n z) → p ≤ z | ||
| p-least = LF .snd .snd | ||
|
|
||
| p-prime : isPrime p | ||
| p-prime = leastFactorIsPrime n p HFnp p-least | ||
|
|
||
| answer : (isPrime n) ⊎ (isComposite n) | ||
| answer with (Dichotomyℕ n p) | ||
| ... | inl n≤p = inl (subst (λ x → isPrime x) (≤-antisym p≤n n≤p) p-prime) | ||
| ... | inr p<n = inr (composite p q p-prime 1<q pq=n (λ z 1<z z∣n → p-least z (1<z , z∣n))) | ||
| where | ||
| 1<q : 1 < q | ||
| 1<q with (1 ≟ q) | ||
| ... | lt 1<q = 1<q | ||
| ... | gt q<1 = ⊥.rec (1<→¬=0 n 1<n | ||
| (sym pq=n ∙ cong (p ·_) (<1→0 q q<1) ∙ sym (0≡m·0 p))) | ||
| ... | eq 1=q = ⊥.rec (¬n<n (subst (λ x → x < n) | ||
| (subst | ||
| (λ x → p ≡ p · x) | ||
| 1=q | ||
| (sym (·-identityʳ p)) ∙ pq=n) | ||
| p<n)) | ||
|
|
||
| newPrime : ∀ n → Σ[ p ∈ ℕ ] (n < p) × (isPrime p) | ||
| newPrime n with primeOrComp (suc (factorial n)) (suc< (0<factorial n)) | ||
| ... | inl sfnp = (suc (factorial n)) , suc-≤-suc (n≤! n) , sfnp | ||
| ... | inr (composite p q pp 1<q pq=n least) with Dichotomyℕ p n | ||
| ... | inr n<p = p , n<p , pp | ||
| ... | inl p≤n = ⊥.rec (<≠ 1<p (sym (div1→1 p p∣1))) where | ||
| 1<p = pp .isPrime.n-proper | ||
| p∣1 : p ∣ 1 | ||
| p∣1 = ∣+-cancel p 1 (n !) (≤n∣n! p n p≤n (1<→¬=0 p 1<p)) (∥_∥₁.∣ q , ·-comm q p ∙ pq=n ∣₁) | ||
|
|
||
|
|
||
| record PrimeFactors (n : ℕ) : Type where | ||
| no-eta-equality | ||
| constructor pfs | ||
| field | ||
| primes : List ℕ | ||
| factored : product primes ≡ n | ||
| allPrime : All isPrime primes | ||
| open PrimeFactors | ||
|
|
||
| PF-prime : ∀ n → isPrime n → PrimeFactors n | ||
| PF-prime n np = pfs (n ∷ []) (·-identityʳ n) (np ∷ []) | ||
|
|
||
| PF-comp-work : ∀ n → (∀ m → m < n → isComposite m → PrimeFactors m) → isComposite n → | ||
| PrimeFactors n | ||
| PF-comp-work n rec nComp@(composite p q p-prime 1<q pq=n _) = | ||
| pfs (p ∷ primes qFacs) | ||
| (subst (λ x → p · x ≡ n) (sym (factored qFacs)) pq=n) | ||
| (p-prime ∷ allPrime qFacs) | ||
| where | ||
| qFacs : PrimeFactors q | ||
| qFacs with (primeOrComp q 1<q) | ||
| ... | inl qp = PF-prime q qp | ||
| ... | inr qc = rec q (PropFac< q p n 1<p 0<n (·-comm q p ∙ pq=n)) qc where | ||
| 1<p = isPrime.n-proper p-prime | ||
| 0<n = <-trans (2 , refl) (isComposite.3<n nComp) | ||
|
|
||
| PF-comp : ∀ n → isComposite n → PrimeFactors n | ||
| PF-comp = WFI.induction <-wellfounded PF-comp-work | ||
|
|
||
| PF-aux : ∀ n → (isPrime n) ⊎ (isComposite n) → PrimeFactors n | ||
| PF-aux n (inl np) = PF-prime n np | ||
| PF-aux n (inr nc) = PF-comp n nc | ||
|
|
||
| factorize : ∀ n → 0 < n → PrimeFactors n | ||
| factorize 0 0<0 = ⊥.rec (¬n<n 0<0) | ||
| factorize 1 _ = pfs [] refl [] | ||
| factorize n@(suc (suc n-2)) _ = PF-aux n (primeOrComp n (n-2 , +-comm n-2 2)) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,20 @@ | ||
| {-# OPTIONS --safe #-} | ||
|
|
||
| module Cubical.Data.Nat.Primes.Imports where | ||
|
|
||
| open import Cubical.Foundations.Prelude public | ||
| open import Cubical.Foundations.Function public | ||
| open import Cubical.Foundations.Isomorphism public | ||
|
|
||
| open import Cubical.Data.Nat hiding (elim) public | ||
| open import Cubical.Data.Nat.Order public | ||
| open import Cubical.Data.Nat.Divisibility public | ||
| open import Cubical.Data.Empty as ⊥ hiding (elim) public | ||
| open import Cubical.Data.Unit public | ||
| open import Cubical.Data.Sigma public | ||
| open import Cubical.Data.List hiding (elim ; rec ; map) public | ||
| open import Cubical.Data.Sum hiding (elim ; rec ; map) public | ||
| open import Cubical.Relation.Nullary public | ||
| open import Cubical.HITs.PropositionalTruncation hiding (map2 ; rec) public | ||
| open import Cubical.Induction.WellFounded public | ||
| open import Cubical.Data.Fin hiding (elim) public |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,61 @@ | ||
| {-# OPTIONS --safe -W noUnsupportedIndexedMatch #-} | ||
qlbrpl marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||
|
|
||
| module Cubical.Data.Nat.Primes.Infinitude where | ||
|
|
||
| open import Cubical.Data.Nat.Primes.Imports | ||
| open import Cubical.Data.Nat.Primes.Lemmas | ||
| open import Cubical.Data.Nat.Primes.Base | ||
| open import Cubical.Data.Nat.Primes.Split | ||
| open import Cubical.Data.Nat.Primes.Concrete | ||
| open import Cubical.Data.Nat.Primes.Factors | ||
| open import Cubical.Data.Nat.Primes.DecProps | ||
|
|
||
|
|
||
| nextPrime : (n : ℕ) → Σ[ p ∈ ℕ ] ((n < p) × (isPrime p)) × ((z : ℕ) → (n < z) × isPrime z → p ≤ z) | ||
| nextPrime n = findLeast (((newPrime n) .snd)) (DecProd (<Dec n) DecPrime) | ||
|
|
||
| nthPrime : (n : ℕ) → Σ[ p ∈ ℕ ] isPrime p × (countBelow isPrime DecPrime p ≡ n) | ||
| nthPrime zero = (least-prime .fst , least-prime .snd .fst , refl) where | ||
| least-prime = findLeast prime2 DecPrime | ||
| nthPrime (suc n) = (next-prime .fst , next-prime .snd .fst .snd , snprimes) where | ||
| IH = nthPrime n | ||
|
|
||
| p#n = IH .fst | ||
| p#n-prime = IH .snd .fst | ||
| #p<p#n=n = IH .snd .snd | ||
|
|
||
| next-prime : Σ[ q ∈ ℕ ] ((p#n < q) × isPrime q) × (∀ z → (p#n < z) × isPrime z → q ≤ z) | ||
| next-prime = nextPrime p#n | ||
|
|
||
| q = next-prime .fst | ||
| p#n<q = next-prime .snd .fst .fst | ||
| p#n≤q = <-weaken p#n<q | ||
| q-prime = next-prime .snd .fst .snd | ||
| q-least = next-prime .snd .snd | ||
|
|
||
| sum : countBelow isPrime DecPrime q | ||
| ≡ countRange isPrime DecPrime p#n q p#n≤q + countBelow isPrime DecPrime p#n | ||
| sum = sym (countWorks isPrime DecPrime p#n q p#n≤q) | ||
| p1 : countRange isPrime DecPrime p#n q p#n≤q ≡ 1 | ||
| p1 = leastAboveLow isPrime DecPrime p#n q p#n-prime | ||
| (isPropDec (primeProp p#n) (DecPrime p#n) (yes p#n-prime)) | ||
| q-least p#n<q | ||
|
|
||
| snprimes : countBelow isPrime DecPrime q ≡ suc n | ||
| snprimes = sum ∙ add-equations p1 #p<p#n=n | ||
|
|
||
|
|
||
| open Iso | ||
| ℕ≅primeℕ : Iso ℕ (Σ ℕ isPrime) | ||
| fun ℕ≅primeℕ n = (pn .fst , pn .snd .fst) where pn = nthPrime n | ||
| inv ℕ≅primeℕ (p , _) = countBelow isPrime DecPrime p | ||
| leftInv ℕ≅primeℕ n = nthPrime n .snd .snd | ||
| rightInv ℕ≅primeℕ (p , p-prime) = | ||
| ΣPathP (answer , isProp→PathP (λ i → primeProp (answer i)) pn-prime p-prime) where | ||
| pn = nthPrime (countBelow isPrime DecPrime p) | ||
| pn-prime = pn .snd .fst | ||
| answer : pn .fst ≡ p | ||
| answer = countBelowYesInj isPrime DecPrime (pn .fst) p pn-prime p-prime | ||
| (isPropDec (primeProp (pn .fst)) (DecPrime (pn .fst)) (yes pn-prime)) | ||
| (isPropDec (primeProp p) (DecPrime p) (yes p-prime)) | ||
| (pn .snd .snd) | ||
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.