-
Notifications
You must be signed in to change notification settings - Fork 156
Prime (and composite) numbers #1228
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
qlbrpl
wants to merge
7
commits into
agda:master
Choose a base branch
from
qlbrpl:master
base: master
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from all commits
Commits
Show all changes
7 commits
Select commit
Hold shift + click to select a range
779720e
added Cubical.Data.Nat.Primes
qlbrpl 4b99090
removed commented-out code
qlbrpl 4d5d4ba
removed unused code, made changes according to suggestions
qlbrpl 4fc04fe
added no-eta-equality to isPrime and isComposite
qlbrpl 8cd16b9
cleaned up awfulness
qlbrpl 9642bf5
aesthetic change
qlbrpl 0fca3b5
renamed Split to Count and moved it out of Primes
qlbrpl File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,255 @@ | ||
| {-# OPTIONS --safe #-} | ||
|
|
||
| module Cubical.Data.Nat.Count where | ||
|
|
||
| open import Cubical.Foundations.Prelude | ||
| open import Cubical.Foundations.Function | ||
| open import Cubical.Data.Nat | ||
| open import Cubical.Data.Nat.Order | ||
| open import Cubical.Data.Sigma | ||
| open import Cubical.Data.Sum hiding (elim ; rec ; map) | ||
| open import Cubical.Data.List hiding (elim ; rec ; map) | ||
|
|
||
| open import Cubical.Relation.Nullary | ||
| open import Cubical.Data.Empty as ⊥ hiding (elim) | ||
|
|
||
|
|
||
| private | ||
| variable | ||
| ℓ ℓ' ℓ'' : Level | ||
|
|
||
| -- some definitions and lemmas | ||
|
|
||
| decToN : {A : Type ℓ} → Dec A → ℕ | ||
| decToN (yes _) = 1 | ||
| decToN (no _) = 0 | ||
|
|
||
| data All {A : Type ℓ} (P : A → Type ℓ') : List A → Type (ℓ-max ℓ ℓ') where | ||
| [] : All P [] | ||
| _∷_ : ∀ {x xs} → P x → All P xs → All P (x ∷ xs) | ||
|
|
||
| mapAll : {A : Type ℓ} {P Q : A → Type ℓ'} {xs : List A} → (∀ {a} → P a → Q a) → All P xs → All Q xs | ||
| mapAll f [] = [] | ||
| mapAll f (Px ∷ Pxs) = f Px ∷ mapAll f Pxs | ||
|
|
||
| add-equations : ∀ {a} {b} {c} {d} → a ≡ b → c ≡ d → a + c ≡ b + d | ||
|
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This is |
||
| add-equations {b = b} {c = c} a=b c=d = cong (_+ c) a=b ∙ cong (b +_) c=d | ||
|
|
||
| <≠ : forall {m} {n} → m < n → ¬ m ≡ n | ||
| <≠ {m = m} m<n m=n = <-asym m<n (0 , sym m=n) | ||
|
|
||
|
|
||
| DecProd-aux : {A : Type ℓ} (P : A → Type ℓ') (Q : A → Type ℓ'') → ∀ {a} → | ||
|
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This could be in |
||
| Dec (P a) → Dec (Q a) → Dec (P a × Q a) | ||
| DecProd-aux _ _ (yes Pa) (yes Qa) = yes (Pa , Qa) | ||
| DecProd-aux _ _ (yes Pa) (no ¬Qa) = no (λ pf → ¬Qa (pf .snd)) | ||
| DecProd-aux _ _ (no ¬Pa) _ = no (λ pf → ¬Pa (pf .fst)) | ||
|
|
||
| DecProd : {A : Type ℓ} {P : A → Type ℓ'} {Q : A → Type ℓ''} → | ||
| (∀ a → Dec (P a)) → (∀ a → Dec (Q a)) → (∀ a → Dec (P a × Q a)) | ||
| DecProd {P = P} {Q = Q} Pdec Qdec a = DecProd-aux P Q (Pdec a) (Qdec a) | ||
|
|
||
|
|
||
| -- splitting naturals below a bound | ||
| -- into those for which a given decidable property holds | ||
| -- and those for which it does not | ||
| module _ (P : ℕ → Type ℓ) (Pdec : ∀ n → Dec (P n)) where | ||
|
|
||
| goodSplit : ℕ → Type ℓ | ||
| goodSplit n = Σ[ (goods , bads) ∈ List ℕ × List ℕ ] | ||
| (All P goods × All (λ n → ¬ (P n)) bads) | ||
| × (All (_< n) goods × All (_< n) bads) | ||
| × ((length goods) + (length bads) ≡ n) | ||
|
|
||
| splitBelow-aux : (n : ℕ) → goodSplit n → Dec (P n) → goodSplit (suc n) | ||
| splitBelow-aux n ((ws , ls) , (Pws , ¬Pls) , (ws<n , ls<n) , sum) (yes Pn) = | ||
| (n ∷ ws , ls) , | ||
| (Pn ∷ Pws , ¬Pls) , | ||
| ((0 , refl) ∷ ws<sn , ls<sn) , | ||
| cong suc sum where | ||
| ws<sn = mapAll (λ x<n → <-trans x<n (0 , refl)) ws<n | ||
| ls<sn = mapAll (λ x<n → <-trans x<n (0 , refl)) ls<n | ||
| splitBelow-aux n ((ws , ls) , (Pws , ¬Pls) , (ws<n , ls<n) , sum) (no ¬Pn) = | ||
| (ws , n ∷ ls) , | ||
| (Pws , ¬Pn ∷ ¬Pls) , | ||
| (ws<sn , (0 , refl) ∷ ls<sn) , | ||
| +-suc _ _ ∙ cong suc sum where | ||
| ws<sn = mapAll (λ x<n → <-trans x<n (0 , refl)) ws<n | ||
| ls<sn = mapAll (λ x<n → <-trans x<n (0 , refl)) ls<n | ||
|
|
||
| splitBelow : (top : ℕ) → goodSplit top | ||
| splitBelow zero = ([] , []) , ([] , []) , ([] , []) , refl | ||
| splitBelow (suc n) = splitBelow-aux n (splitBelow n) (Pdec n) | ||
|
|
||
| -- definitions and properties of counting: | ||
| -- how many naturals in a given range have a given decidable property? | ||
| -- note: lower bound included, upper bound excluded (if equal nothing counted) | ||
| module _ (P : ℕ → Type ℓ) (Pdec : ∀ n → Dec (P n)) where | ||
| countBelow : ℕ → ℕ | ||
| countBelow top = length ((splitBelow P Pdec top) .fst .fst) | ||
|
|
||
| countRange : (low top : ℕ) → low ≤ top → ℕ | ||
| countRange low top _ = length (splitBelow | ||
| (λ n → (P n) × (low ≤ n)) (DecProd Pdec (≤Dec low)) top | ||
| .fst .fst) | ||
|
|
||
| least→count=0 : {n : ℕ} → (∀ z → P z → n ≤ z) → countBelow n ≡ 0 | ||
| least→count=0 {n} least = answer where | ||
| split = splitBelow P Pdec n | ||
| goods = split .fst .fst | ||
| Pgoods = split .snd .fst .fst | ||
| goods<n = split .snd .snd .fst .fst | ||
|
|
||
| answer : countBelow n ≡ 0 | ||
| answer with goods | goods<n | Pgoods | ||
| ... | [] | [] | [] = refl | ||
| ... | x ∷ _ | x<n ∷ _ | Px ∷ _ = ⊥.rec (<-asym x<n (least x Px)) | ||
|
|
||
| countRefl≡0 : (n : ℕ) → countRange n n (0 , refl) ≡ 0 | ||
| countRefl≡0 n = answer where | ||
| split = splitBelow (λ x → (P x) × (n ≤ x)) (DecProd Pdec (≤Dec n)) n | ||
| ws = split .fst .fst | ||
| Pws = split .snd .fst .fst | ||
| ws<n = split .snd .snd .fst .fst | ||
|
|
||
| answer : length ws ≡ 0 | ||
| answer with ws | Pws | ws<n | ||
| ... | [] | [] | [] = refl | ||
| ... | _ | (_ , n≤w) ∷ _ | w<n ∷ _ = ⊥.rec (<-asym w<n n≤w) | ||
|
|
||
| countRangeSuc : (l t : ℕ) → (l≤t : l ≤ t) → | ||
| (DPt : Dec (P t)) → (DPt ≡ Pdec t) → | ||
| (decToN DPt) + countRange l t l≤t ≡ countRange l (suc t) (≤-suc l≤t) | ||
| countRangeSuc l t l≤t (yes Pt) p = answer where | ||
| Q = λ n → (P n) × (l ≤ n) | ||
| dprod = λ a → DecProd-aux P (l ≤_) (Pdec a) (≤Dec l a) | ||
| IH = splitBelow Q dprod t | ||
|
|
||
| replace : Σ[ Qt ∈ Q t ] yes Qt ≡ dprod t | ||
| replace with dprod t | ||
| ... | no ¬Qt = ⊥.rec (¬Qt (Pt , l≤t)) | ||
| ... | yes Qt = Qt , refl | ||
|
|
||
| answer : suc (length (IH .fst .fst)) | ||
| ≡ length (splitBelow-aux Q dprod t IH (dprod t) .fst .fst) | ||
| answer = cong (λ x → length (splitBelow-aux Q dprod t IH x .fst .fst)) (replace .snd) | ||
|
|
||
| countRangeSuc l t l≤t (no ¬Pt) p = answer where | ||
| Q = λ n → (P n) × (l ≤ n) | ||
| dprod = λ a → DecProd-aux P (l ≤_) (Pdec a) (≤Dec l a) | ||
| IH = splitBelow Q dprod t | ||
|
|
||
| replace : Σ[ ¬Qt ∈ ¬ (Q t) ] no ¬Qt ≡ dprod t | ||
| replace with dprod t | ||
| ... | no ¬Qt = ¬Qt , refl | ||
| ... | yes (Pt , _) = ⊥.rec (¬Pt Pt) | ||
|
|
||
| answer : length (IH .fst .fst) | ||
| ≡ length (splitBelow-aux Q dprod t IH (dprod t) .fst .fst) | ||
| answer = cong (λ x → length (splitBelow-aux Q dprod t IH x .fst .fst)) (replace .snd) | ||
|
|
||
| countBelowSuc : (n : ℕ) → (DPn : Dec (P n)) → (DPn ≡ Pdec n) → | ||
| (decToN DPn) + countBelow n ≡ countBelow (suc n) | ||
| countBelowSuc n (yes Pn) p = | ||
| cong (λ x → length (splitBelow-aux P Pdec n (splitBelow P Pdec n) x .fst .fst)) p | ||
| countBelowSuc n (no ¬Pn) p = | ||
| cong (λ x → length (splitBelow-aux P Pdec n (splitBelow P Pdec n) x .fst .fst)) p | ||
|
|
||
|
|
||
| countWorks-aux : (l t : ℕ) → (l≤st : l ≤ (suc t)) → | ||
| ((l≤t : l ≤ t) → (countRange l t l≤t) + (countBelow l) ≡ countBelow t) → | ||
| ((l < suc t) ⊎ (l ≡ suc t)) → | ||
| (countRange l (suc t) l≤st) + (countBelow l) ≡ countBelow (suc t) | ||
| countWorks-aux l t l≤st recf (inr l=st) = (cong (_+ countBelow l) p2 ∙ p1) ∙ p3 where | ||
| p1 : countRange l l (0 , refl) + countBelow l ≡ countBelow l | ||
| p1 = cong (_+ countBelow l) (countRefl≡0 l) | ||
| p2 : countRange l (suc t) l≤st ≡ countRange l l (0 , refl) | ||
| p2 = sym (cong₂ (λ x l≤x → countRange l x l≤x) | ||
| l=st | ||
| (isProp→PathP (λ i → isProp≤) (0 , refl) l≤st)) | ||
| p3 : countBelow l ≡ countBelow (suc t) | ||
| p3 = cong (countBelow) l=st | ||
|
|
||
| countWorks-aux l t l≤st recf (inl l<st) = induct (recf l≤t) where | ||
| l≤t : l ≤ t | ||
| l≤t = pred-≤-pred l<st | ||
| induct : (countRange l t l≤t) + (countBelow l) ≡ countBelow t → | ||
| (countRange l (suc t) l≤st) + (countBelow l) ≡ countBelow (suc t) | ||
| induct IH = sym (cong (_+ countBelow l) p1) ∙ p3 ∙ p2 where | ||
| p1 : decToN (Pdec t) + countRange l t l≤t ≡ countRange l (suc t) l≤st | ||
| p1 = countRangeSuc l t l≤t (Pdec t) refl | ||
| p2 : decToN (Pdec t) + countBelow t ≡ countBelow (suc t) | ||
| p2 = countBelowSuc t (Pdec t) refl | ||
| p3 : decToN (Pdec t) + countRange l t l≤t + countBelow l ≡ | ||
| decToN (Pdec t) + countBelow t | ||
| p3 = sym (+-assoc (decToN (Pdec t)) (countRange l t l≤t) (countBelow l)) | ||
| ∙ cong (decToN (Pdec t) +_) IH | ||
|
|
||
| countWorks : (low top : ℕ) → (l≤t : low ≤ top) → | ||
| (countRange low top l≤t) + (countBelow low) ≡ countBelow top | ||
| countWorks l zero l≤0 = cong (λ x → countBelow x) (≤0→≡0 l≤0) | ||
| countWorks l (suc t) l≤st = countWorks-aux l t l≤st (countWorks l t) (≤-split l≤st) | ||
|
|
||
|
|
||
| leastAboveLow-aux : (l t : ℕ) → (l<st : l < (suc t)) → | ||
| (Pl : P l) → (Pdec l ≡ yes Pl) → (∀ z → (l < z) × (P z) → (suc t) ≤ z) → | ||
| (l < t) ⊎ (l ≡ t) → | ||
| (l < t → countRange l t (pred-≤-pred l<st) ≡ 1) → | ||
| countRange l (suc t) (<-weaken l<st) ≡ 1 | ||
| leastAboveLow-aux l t l<st Pl p least (inr l=t) _ = | ||
| sym (countRangeSuc l t (0 , l=t) (Pdec t) refl) ∙ p3 where | ||
| p1 : decToN (Pdec t) ≡ 1 | ||
| p1 = cong (λ x → decToN (Pdec x)) (sym l=t) ∙ cong decToN p | ||
| p2 : countRange l t (0 , l=t) ≡ 0 | ||
| p2 = cong₂ (λ x l≤x → countRange l x l≤x) | ||
| (sym l=t) | ||
| (isProp→PathP (λ i → isProp≤) (0 , l=t) (0 , refl)) | ||
| ∙ countRefl≡0 l | ||
| p3 : decToN (Pdec t) + countRange l t (0 , l=t) ≡ 1 | ||
| p3 = add-equations p1 p2 | ||
| leastAboveLow-aux l t l<st Pl p least (inl l<t) recf = | ||
| p2 ∙ cong (_+ countRange l t (pred-≤-pred l<st)) p1 ∙ IH where | ||
| IH : countRange l t (pred-≤-pred l<st) ≡ 1 | ||
| IH = recf l<t | ||
| p1 : decToN (Pdec t) ≡ 0 | ||
| p1 with Pdec t | ||
| ... | no _ = refl | ||
| ... | yes Pt = ⊥.rec (<-asym (least t (l<t , Pt)) (0 , refl)) | ||
| p2 : countRange l (suc t) (<-weaken l<st) | ||
| ≡ (decToN (Pdec t)) + countRange l t (pred-≤-pred l<st) | ||
| p2 = sym (countRangeSuc l t (pred-≤-pred l<st) (Pdec t) refl) | ||
|
|
||
| leastAboveLow : (l t : ℕ) → (Pl : P l) → (Pdec l ≡ yes Pl) → | ||
| (∀ z → (l < z) × (P z) → t ≤ z) → (l<t : l < t) → | ||
| countRange l t (<-weaken l<t) ≡ 1 | ||
| leastAboveLow _ zero _ _ _ l<0 = ⊥.rec (¬-<-zero l<0) | ||
| leastAboveLow l (suc t) Pl p least l<st = | ||
| leastAboveLow-aux l t l<st Pl p least (<-split l<st) | ||
| (leastAboveLow l t Pl p (λ z Qz → <-weaken (least z Qz))) | ||
|
|
||
|
|
||
| countBelow-lt-aux : (x y : ℕ) → (Px : P x) → (Pdec x ≡ yes Px) → | ||
| x < (suc y) → (x < y) ⊎ (x ≡ y) → | ||
| (x < y → countBelow x < countBelow y) → | ||
| countBelow x < countBelow (suc y) | ||
| countBelow-lt-aux x _ Px p _ (inr x=y) _ = 0 , q ∙ cong (countBelow ∘ suc) x=y where | ||
| q : suc (countBelow x) ≡ countBelow (suc x) | ||
| q = countBelowSuc x (yes Px) (sym p) | ||
| countBelow-lt-aux x y Px p x<sy (inl x<y) recf = | ||
| <≤-trans (recf x<y) (decToN (Pdec y) , countBelowSuc y (Pdec y) refl) | ||
|
|
||
| countBelow-lt : (x y : ℕ) → | ||
| (Px : P x) → (Pdec x ≡ yes Px) → | ||
| x < y → countBelow x < countBelow y | ||
| countBelow-lt _ zero _ _ x<0 = ⊥.rec (¬-<-zero x<0) | ||
| countBelow-lt x (suc y) Px p x<sy = | ||
| countBelow-lt-aux x y Px p x<sy | ||
| (<-split x<sy) (countBelow-lt x y Px p) | ||
|
|
||
| countBelowYesInj : (x y : ℕ) → (Px : P x) → (Py : P y) → | ||
| (Pdec x ≡ yes Px) → (Pdec y ≡ yes Py) → | ||
| countBelow x ≡ countBelow y → x ≡ y | ||
| countBelowYesInj x y Px Py q1 q2 p with x ≟ y | ||
| ... | eq x=y = x=y | ||
| ... | lt x<y = ⊥.rec (<≠ (countBelow-lt x y Px q1 x<y) p) | ||
| ... | gt y<x = ⊥.rec (<≠ (countBelow-lt y x Py q2 y<x) (sym p)) | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,31 @@ | ||
| {-# OPTIONS --safe #-} | ||
|
|
||
| module Cubical.Data.Nat.Primes.Base where | ||
|
|
||
| open import Cubical.Foundations.Prelude public | ||
| open import Cubical.Data.Nat | ||
| open import Cubical.Data.Nat.Order | ||
| open import Cubical.Data.Nat.Divisibility | ||
| open import Cubical.Data.Sum hiding (elim ; rec ; map) | ||
| open import Cubical.Data.Nat.Primes.Lemmas using (1<·1<=3<) | ||
|
|
||
|
|
||
| record isPrime (n : ℕ) : Type where | ||
| no-eta-equality | ||
| constructor prime | ||
qlbrpl marked this conversation as resolved.
Show resolved
Hide resolved
|
||
| field | ||
| n-proper : 1 < n | ||
| primality : ∀ d → d ∣ n → (d ≡ 1) ⊎ (d ≡ n) | ||
|
|
||
| record isComposite (n : ℕ) : Type where | ||
| no-eta-equality | ||
| constructor composite | ||
| field | ||
qlbrpl marked this conversation as resolved.
Show resolved
Hide resolved
|
||
| p q : ℕ | ||
| p-prime : isPrime p | ||
| q-proper : 1 < q | ||
| factors : p · q ≡ n | ||
| least : ∀ z → 1 < z → z ∣ n → p ≤ z | ||
|
|
||
| 3<n : 3 < n | ||
| 3<n = subst (λ x → 3 < x) factors (1<·1<=3< (isPrime.n-proper p-prime) q-proper) | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,52 @@ | ||
| {-# OPTIONS --safe #-} | ||
|
|
||
| module Cubical.Data.Nat.Primes.Concrete where | ||
|
|
||
| open import Cubical.Data.Nat.Primes.Imports | ||
| open import Cubical.Data.Nat.Primes.Lemmas | ||
| open import Cubical.Data.Nat.Primes.Base | ||
| open import Cubical.Data.Empty as ⊥ hiding (elim) | ||
|
|
||
|
|
||
| prime2 : isPrime 2 | ||
| prime2 = prime (0 , refl) primality-2 where | ||
| primality-2 : (d : ℕ) → d ∣ 2 → (d ≡ 1) ⊎ (d ≡ 2) | ||
| primality-2 d d∣2 with (≤-split (m∣n→m≤n snotz d∣2)) | ||
| ... | inr d=2 = inr d=2 | ||
| ... | inl d<2 with <-split d<2 | ||
| ... | inr d=1 = inl d=1 | ||
| ... | inl d<1 = ⊥.rec (¬<1∣sn d 1 d<1 d∣2) | ||
|
|
||
|
|
||
| private | ||
|
|
||
| -- can be used to directly prove primality of a specific number | ||
| notDiv : ∀ d n → Σ[ k ∈ ℕ ] (k · d < n) × (n < suc k · d) → ¬ d ∣ n | ||
| notDiv d n (k , kd<n , n<d+kd) d∣n-trunc | ||
| with d | (∣-untrunc d∣n-trunc) | (fst (∣-untrunc d∣n-trunc) ≟ k) | ||
| ... | d | (c , cd=n) | (eq c=k) = <≠ kd<n (subst (λ x → x · d ≡ n) c=k cd=n) | ||
| ... | 0 | (c , cd=n) | (lt c<k) = ¬-<-zero (subst (λ x → k · 0 < x) | ||
| (sym (cd=n) ∙ sym (0≡m·0 c)) | ||
| kd<n) | ||
| ... | suc d-1 | (c , cd=n) | (lt c<k) = <≠ (lem1 c k d-1 n c<k kd<n) cd=n | ||
| ... | d | (0 , cd=n) | (gt k<c) = ¬-<-zero k<c | ||
| ... | d | (suc c , d+cd=n) | (gt k<sc) with (<-split k<sc) | ||
| ... | inr k=c = <≠ n<d+kd | ||
| (sym (subst (λ x → d + x · d ≡ n) (sym k=c) d+cd=n)) | ||
| ... | inl k<c = <≠ (lem2 c k d n k<c n<d+kd) (sym d+cd=n) | ||
|
|
||
| -- example | ||
| prime5 : isPrime 5 | ||
| prime5 = prime (3 , refl) primality-5 where | ||
| primality-5 : (d : ℕ) → d ∣ 5 → (d ≡ 1) ⊎ (d ≡ 5) | ||
| primality-5 d d∣5 with (≤-split (m∣n→m≤n snotz d∣5)) | ||
| ... | inr d=5 = inr d=5 | ||
| ... | inl d<5 with <-split d<5 | ||
| ... | inr d=4 = ⊥.rec (notDiv 4 5 (1 , (0 , refl) , (2 , refl)) (subst (λ x → x ∣ 5) d=4 d∣5)) | ||
| ... | inl d<4 with <-split d<4 | ||
| ... | inr d=3 = ⊥.rec (notDiv 3 5 (1 , (1 , refl) , (0 , refl)) (subst (λ x → x ∣ 5) d=3 d∣5)) | ||
| ... | inl d<3 with <-split d<3 | ||
| ... | inr d=2 = ⊥.rec (notDiv 2 5 (2 , (0 , refl) , (0 , refl)) (subst (λ x → x ∣ 5) d=2 d∣5)) | ||
| ... | inl d<2 with <-split d<2 | ||
| ... | inr d=1 = inl d=1 | ||
| ... | inl d<1 = ⊥.rec (¬<1∣sn d 4 d<1 d∣5) |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I don't think this should be a private definition here because it's useful in other places, you should move it to
Data.List