-
Notifications
You must be signed in to change notification settings - Fork 143
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
currying as equivalence of functors categories, also moved to new mod…
…ule to avoid circular dep.
- Loading branch information
1 parent
b66aaba
commit ae5a1bc
Showing
6 changed files
with
164 additions
and
56 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,142 @@ | ||
{-# OPTIONS --safe #-} | ||
|
||
module Cubical.Categories.Instances.Functors.Currying where | ||
|
||
open import Cubical.Foundations.Prelude | ||
open import Cubical.Foundations.Isomorphism | ||
open import Cubical.Foundations.Transport | ||
|
||
open import Cubical.Categories.Category renaming (isIso to isIsoC) | ||
open import Cubical.Categories.Constructions.BinProduct | ||
open import Cubical.Categories.Functor.Base | ||
open import Cubical.Categories.NaturalTransformation.Base | ||
open import Cubical.Foundations.Function renaming (_∘_ to _∘→_) | ||
open import Cubical.Categories.Instances.Functors | ||
open import Cubical.Categories.Equivalence.AdjointEquivalence | ||
open import Cubical.Categories.Adjoint | ||
|
||
private | ||
variable | ||
ℓC ℓC' ℓD ℓD' ℓE ℓE' : Level | ||
|
||
module _ (C : Category ℓC ℓC') (D : Category ℓD ℓD') where | ||
open Category | ||
open NatTrans | ||
open Functor | ||
|
||
|
||
open Iso | ||
|
||
module _ (E : Category ℓE ℓE') where | ||
λF : Functor (E ×C C) D → Functor E (FUNCTOR C D) | ||
λF F .F-ob e .F-ob c = F ⟅ e , c ⟆ | ||
λF F .F-ob e .F-hom f = F ⟪ (E .id) , f ⟫ | ||
λF F .F-ob e .F-id = F .F-id | ||
λF F .F-ob e .F-seq f g = | ||
F ⟪ E .id , g ∘⟨ C ⟩ f ⟫ | ||
≡⟨ (λ i → F ⟪ (E .⋆IdL (E .id) (~ i)) , (g ∘⟨ C ⟩ f) ⟫) ⟩ | ||
(F ⟪ (E .id ∘⟨ E ⟩ E .id) , g ∘⟨ C ⟩ f ⟫) | ||
≡⟨ F .F-seq (E .id , f) (E .id , g) ⟩ | ||
(F ⟪ E .id , g ⟫ ∘⟨ D ⟩ F ⟪ E .id , f ⟫) ∎ | ||
λF F .F-hom h .N-ob c = F ⟪ h , (C .id) ⟫ | ||
λF F .F-hom h .N-hom f = | ||
F ⟪ h , C .id ⟫ ∘⟨ D ⟩ F ⟪ E .id , f ⟫ ≡⟨ sym (F .F-seq _ _) ⟩ | ||
F ⟪ h ∘⟨ E ⟩ E .id , C .id ∘⟨ C ⟩ f ⟫ | ||
≡⟨ (λ i → F ⟪ E .⋆IdL h i , C .⋆IdR f i ⟫) ⟩ | ||
F ⟪ h , f ⟫ ≡⟨ (λ i → F ⟪ (E .⋆IdR h (~ i)) , (C .⋆IdL f (~ i)) ⟫) ⟩ | ||
F ⟪ E .id ∘⟨ E ⟩ h , f ∘⟨ C ⟩ C .id ⟫ ≡⟨ F .F-seq _ _ ⟩ | ||
F ⟪ E .id , f ⟫ ∘⟨ D ⟩ F ⟪ h , C .id ⟫ ∎ | ||
λF F .F-id = makeNatTransPath (funExt λ c → F .F-id) | ||
λF F .F-seq f g = makeNatTransPath (funExt lem) where | ||
lem : (c : C .ob) → | ||
F ⟪ g ∘⟨ E ⟩ f , C .id ⟫ ≡ | ||
F ⟪ g , C .id ⟫ ∘⟨ D ⟩ F ⟪ f , C .id ⟫ | ||
lem c = | ||
F ⟪ g ∘⟨ E ⟩ f , C .id ⟫ | ||
≡⟨ (λ i → F ⟪ (g ∘⟨ E ⟩ f) , (C .⋆IdR (C .id) (~ i)) ⟫) ⟩ | ||
F ⟪ g ∘⟨ E ⟩ f , C .id ∘⟨ C ⟩ C .id ⟫ | ||
≡⟨ F .F-seq (f , C .id) (g , C .id) ⟩ | ||
(F ⟪ g , C .id ⟫) ∘⟨ D ⟩ (F ⟪ f , C .id ⟫) ∎ | ||
|
||
λFFunctor : Functor (FUNCTOR (E ×C C) D) (FUNCTOR E (FUNCTOR C D)) | ||
F-ob λFFunctor = λF | ||
N-ob (F-hom λFFunctor x) _ = | ||
natTrans (curry (N-ob x) _) (curry (N-hom x) _) | ||
N-hom ((F-hom λFFunctor) x) _ = | ||
makeNatTransPath (funExt λ _ → N-hom x (_ , C .id)) | ||
F-id λFFunctor = makeNatTransPath refl | ||
F-seq λFFunctor _ _ = makeNatTransPath refl | ||
|
||
λF⁻ : Functor E (FUNCTOR C D) → Functor (E ×C C) D | ||
F-ob (λF⁻ a) = uncurry (F-ob ∘→ F-ob a) | ||
F-hom (λF⁻ a) _ = N-ob (F-hom a _) _ ∘⟨ D ⟩ (F-hom (F-ob a _)) _ | ||
F-id (λF⁻ a) = cong₂ (seq' D) (F-id (F-ob a _)) | ||
(cong (flip N-ob _) (F-id a)) ∙ D .⋆IdL _ | ||
F-seq (λF⁻ a) _ (eG , cG) = | ||
cong₂ (seq' D) (F-seq (F-ob a _) _ _) (cong (flip N-ob _) | ||
(F-seq a _ _)) | ||
∙ AssocCong₂⋆R {C = D} _ | ||
(N-hom ((F-hom a _) ●ᵛ (F-hom a _)) _ ∙ | ||
(⋆Assoc D _ _ _) ∙ | ||
cong (seq' D _) (sym (N-hom (F-hom a eG) cG))) | ||
|
||
λF⁻Functor : Functor (FUNCTOR E (FUNCTOR C D)) (FUNCTOR (E ×C C) D) | ||
F-ob λF⁻Functor = λF⁻ | ||
N-ob (F-hom λF⁻Functor x) = uncurry (N-ob ∘→ N-ob x) | ||
N-hom ((F-hom λF⁻Functor) {F} {F'} x) {xx} {yy} = | ||
uncurry λ hh gg → | ||
AssocCong₂⋆R {C = D} _ (cong N-ob (N-hom x hh) ≡$ _) | ||
∙∙ cong (comp' D _) ((N-ob x (fst xx) .N-hom) gg) | ||
∙∙ D .⋆Assoc _ _ _ | ||
|
||
F-id λF⁻Functor = makeNatTransPath refl | ||
F-seq λF⁻Functor _ _ = makeNatTransPath refl | ||
|
||
isoλF : Iso (Functor (E ×C C) D) (Functor E (FUNCTOR C D)) | ||
fun isoλF = λF | ||
inv isoλF = λF⁻ | ||
rightInv isoλF b = Functor≡ (λ _ → Functor≡ (λ _ → refl) | ||
λ _ → cong (seq' D _) (congS (flip N-ob _) (F-id b)) ∙ D .⋆IdR _) | ||
λ _ → makeNatTransPathP _ _ | ||
(funExt λ _ → cong (comp' D _) (F-id (F-ob b _)) ∙ D .⋆IdL _) | ||
leftInv isoλF a = Functor≡ (λ _ → refl) λ _ → sym (F-seq a _ _) | ||
∙ cong (F-hom a) (cong₂ _,_ (E .⋆IdL _) (C .⋆IdR _)) | ||
|
||
open AdjointEquivalence | ||
|
||
|
||
𝟙≅ᶜλF⁻∘λF : 𝟙⟨ FUNCTOR (E ×C C) D ⟩ ≅ᶜ λF⁻Functor ∘F λFFunctor | ||
𝟙≅ᶜλF⁻∘λF = pathToNatIso $ | ||
Functor≡ (λ x → Functor≡ (λ _ → refl) | ||
λ _ → cong (F-hom x) (cong₂ _,_ (sym (E .⋆IdL _)) (sym (C .⋆IdR _))) | ||
∙ F-seq x _ _) | ||
λ _ → makeNatTransPathP _ _ refl | ||
|
||
λF∘λF⁻≅ᶜ𝟙 : λFFunctor ∘F λF⁻Functor ≅ᶜ 𝟙⟨ FUNCTOR E (FUNCTOR C D) ⟩ | ||
λF∘λF⁻≅ᶜ𝟙 = pathToNatIso $ Functor≡ | ||
(λ x → Functor≡ | ||
(λ _ → Functor≡ (λ _ → refl) λ _ → cong (D ⋆ F-hom (F-ob x _) _) | ||
(cong N-ob (F-id x) ≡$ _) ∙ D .⋆IdR _) | ||
λ _ → makeNatTransPathP _ _ | ||
(funExt λ _ → cong (comp' D _) (F-id (F-ob x _)) ∙ D .⋆IdL _)) | ||
λ _ → makeNatTransPathP _ _ (funExt λ _ → makeNatTransPathP _ _ refl) | ||
|
||
open UnitCounit.TriangleIdentities | ||
|
||
FunctorCurryAdjointEquivalence : | ||
AdjointEquivalence (FUNCTOR (E ×C C) D) (FUNCTOR E (FUNCTOR C D)) | ||
fun FunctorCurryAdjointEquivalence = λFFunctor | ||
inv FunctorCurryAdjointEquivalence = λF⁻Functor | ||
η FunctorCurryAdjointEquivalence = 𝟙≅ᶜλF⁻∘λF | ||
ε FunctorCurryAdjointEquivalence = λF∘λF⁻≅ᶜ𝟙 | ||
Δ₁ (triangleIdentities FunctorCurryAdjointEquivalence) c = makeNatTransPath $ | ||
funExt λ _ → makeNatTransPath (funExt λ _ → cong (join $ seq' D) | ||
(congP₂$ (transport-fillerExt⁻ (cong (D Endo[_] ∘→ c ⟅_⟆) (transportRefl _))) λ _ → D .id) | ||
∙ D .⋆IdR _) | ||
|
||
Δ₂ (triangleIdentities FunctorCurryAdjointEquivalence) d = makeNatTransPath $ | ||
funExt λ _ → cong (join $ seq' D) | ||
(congP₂$ (transport-fillerExt⁻ (cong (D Endo[_] ∘→ uncurry (F-ob ∘→ F-ob d)) | ||
(transportRefl _))) λ _ → D .id) | ||
∙ D .⋆IdR _ | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters