Skip to content

Commit

Permalink
update Free.Functor to work with Data.Equality, comment why Data.Equa…
Browse files Browse the repository at this point in the history
…lity is used
  • Loading branch information
maxsnew committed Jul 5, 2023
1 parent 4ad47e0 commit 84761fe
Showing 1 changed file with 43 additions and 33 deletions.
76 changes: 43 additions & 33 deletions Cubical/Categories/Constructions/Free/Functor.agda
Original file line number Diff line number Diff line change
Expand Up @@ -7,20 +7,20 @@ open import Cubical.Foundations.Prelude hiding (J)
open import Cubical.Foundations.Function renaming (_∘_ to _∘f_)
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Id hiding (_≡_; isSet; subst)
renaming (refl to reflId; _∙_ to _∙Id_; transport to transportId;
funExt to funExtId)
open import Cubical.Foundations.Path
open import Cubical.Foundations.Transport

open import Cubical.Data.Empty
open import Cubical.Data.Equality.Conversion
open import Cubical.Data.Equality hiding (id; sym)
renaming (_≡_ to Eq; refl to reflEq; _∙_ to _∙Eq_; transport to transportEq)
open import Cubical.Data.Graph.Base
open import Cubical.Data.Sigma

open import Cubical.Categories.Category.Base
open import Cubical.Categories.Constructions.Free.Category
open import Cubical.Categories.Functor.Base hiding (Id)
open import Cubical.Categories.NaturalTransformation.Base hiding (_⟦_⟧)
open import Cubical.Categories.Functor.Base
open import Cubical.Categories.NaturalTransformation.Base
open import Cubical.Categories.UnderlyingGraph

private
Expand Down Expand Up @@ -85,12 +85,22 @@ module FreeFunctor (G : Graph ℓg ℓg')
Fϕ-homo $g x = ϕ x
Fϕ-homo <$g> x = F⟪ ↑ x ⟫

ηϕ : Id (Fϕ .F-ob ∘f ηG ._$g_) (ηH ._$g_ ∘f ϕ)
ηϕ = reflId
ηϕ : Eq (Fϕ .F-ob ∘f ηG ._$g_) (ηH ._$g_ ∘f ϕ)
ηϕ = reflEq

module _ {𝓒 : Category ℓc ℓc'}{𝓓 : Category ℓd ℓd'} {𝓕 : Functor 𝓒 𝓓} where
{-
It is very important for the implementation of the functor
solver that ıϕ uses Data.Equality.Eq rather than Path. The
reason is that the case semH-hom (F⟪_⟫ {A}{B} x) inherently
involves a transport when expressed at this level of
generality, and transport of a refl is the identity function
for Eq but not for Path.
-}
module Semantics (ıG : Interp G 𝓒) (ıH : Interp H 𝓓)
(ıϕ : Id (𝓕 .F-ob ∘f ıG ._$g_) (ıH ._$g_ ∘f ϕ))
(ıϕ : Eq (𝓕 .F-ob ∘f ıG ._$g_) (ıH ._$g_ ∘f ϕ))
where
semG = FreeCatG.Semantics.sem 𝓒 ıG

Expand All @@ -99,7 +109,7 @@ module FreeFunctor (G : Graph ℓg ℓg')
semH-hom idₑ = 𝓓 .id
semH-hom (e ⋆ₑ e₁) = semH-hom e ⋆⟨ 𝓓 ⟩ semH-hom e₁
semH-hom (F⟪_⟫ {A}{B} x) =
transportId (λ (f : G .Node 𝓓 .ob) 𝓓 [ f A , f B ])
transportEq (λ (f : G .Node 𝓓 .ob) 𝓓 [ f A , f B ])
ıϕ
(𝓕 ⟪ semG ⟪ x ⟫ ⟫)
semH-hom (⋆ₑIdL f i) = 𝓓 .⋆IdL (semH-hom f) i
Expand All @@ -108,25 +118,25 @@ module FreeFunctor (G : Graph ℓg ℓg')
𝓓 .⋆Assoc (semH-hom f) (semH-hom f') (semH-hom f'') i
semH-hom (F-idₑ {A} i) = unbound i
where
unbound : transportId (λ f 𝓓 [ f A , f A ]) ıϕ (𝓕 ⟪ semG ⟪ idₑ ⟫ ⟫)
unbound : transportEq (λ f 𝓓 [ f A , f A ]) ıϕ (𝓕 ⟪ semG ⟪ idₑ ⟫ ⟫)
≡ 𝓓 .id
unbound =
J (λ g p transportId (λ f 𝓓 [ f A , f A ]) p
J (λ g p transportEq (λ f 𝓓 [ f A , f A ]) p
(𝓕 ⟪ semG ⟪ idₑ ⟫ ⟫)
≡ 𝓓 .id)
((𝓕 ∘F semG) .F-id) ıϕ
semH-hom (F-seqₑ {A}{B}{C} e e' i) = unbound i
where
unbound :
transportId (λ f 𝓓 [ f A , f C ]) ıϕ (𝓕 ⟪ semG ⟪ e ⋆ₑ e' ⟫ ⟫)
≡ (transportId (λ f 𝓓 [ f A , f B ]) ıϕ (𝓕 ⟪ semG ⟪ e ⟫ ⟫))
⋆⟨ 𝓓 ⟩ (transportId (λ f 𝓓 [ f B , f C ]) ıϕ
transportEq (λ f 𝓓 [ f A , f C ]) ıϕ (𝓕 ⟪ semG ⟪ e ⋆ₑ e' ⟫ ⟫)
≡ (transportEq (λ f 𝓓 [ f A , f B ]) ıϕ (𝓕 ⟪ semG ⟪ e ⟫ ⟫))
⋆⟨ 𝓓 ⟩ (transportEq (λ f 𝓓 [ f B , f C ]) ıϕ
(𝓕 ⟪ semG ⟪ e' ⟫ ⟫))
unbound =
J (λ g p
transportId (λ f 𝓓 [ f A , f C ]) p (𝓕 ⟪ semG ⟪ e ⋆ₑ e' ⟫ ⟫)
≡ (transportId (λ f 𝓓 [ f A , f B ]) p (𝓕 ⟪ semG ⟪ e ⟫ ⟫))
⋆⟨ 𝓓 ⟩ (transportId (λ f 𝓓 [ f B , f C ]) p
transportEq (λ f 𝓓 [ f A , f C ]) p (𝓕 ⟪ semG ⟪ e ⋆ₑ e' ⟫ ⟫)
≡ (transportEq (λ f 𝓓 [ f A , f B ]) p (𝓕 ⟪ semG ⟪ e ⟫ ⟫))
⋆⟨ 𝓓 ⟩ (transportEq (λ f 𝓓 [ f B , f C ]) p
(𝓕 ⟪ semG ⟪ e' ⟫ ⟫)))
((𝓕 ∘F semG) .F-seq e e')
ıϕ
Expand All @@ -144,16 +154,16 @@ module FreeFunctor (G : Graph ℓg ℓg')
semH .F-id = refl
semH .F-seq f g = refl

semϕ : Id (𝓕 ∘F semG) (semH ∘F Fϕ)
semϕ = pathToId (FreeCatG.induction (funcComp 𝓕 semG)
semϕ : Eq (𝓕 ∘F semG) (semH ∘F Fϕ)
semϕ = pathToEq (FreeCatG.induction (funcComp 𝓕 semG)
(funcComp semH Fϕ)
(GrHom≡ aoo aoe))
where
𝓕G = (𝓕 .F-ob ∘f ıG ._$g_)
= (ıH ._$g_ ∘f ϕ)

aoo-gen : (v : Node G) f g
Id {A = G .Node 𝓓 .ob} f g
Eq {A = G .Node 𝓓 .ob} f g
Path _ (f v) (g v)
aoo-gen v f g = J ((λ f' _ Path _ (f v) (f' v))) refl
aoo : (v : Node G)
Expand All @@ -167,17 +177,17 @@ module FreeFunctor (G : Graph ℓg ℓg')
(semH ⟪ Fϕ ⟪ ↑ e ⟫ ⟫)
aoe {v}{w} e = toPathP lem where
lem : Path _
(transportPath (λ i 𝓓 [ aoo-gen v 𝓕G Hϕ ıϕ i
(transport (λ i 𝓓 [ aoo-gen v 𝓕G Hϕ ıϕ i
, aoo-gen w 𝓕G Hϕ ıϕ i ])
(𝓕 ⟪ ıG <$g> e ⟫))
(transportId (λ f 𝓓 [ f v , f w ]) ıϕ (𝓕 ⟪ ıG <$g> e ⟫))
(transportEq (λ f 𝓓 [ f v , f w ]) ıϕ (𝓕 ⟪ ıG <$g> e ⟫))
lem =
J (λ f p
Path _
((transportPath (λ i 𝓓 [ aoo-gen v 𝓕G f p i
((transport (λ i 𝓓 [ aoo-gen v 𝓕G f p i
, aoo-gen w 𝓕G f p i ])
(𝓕 ⟪ ıG <$g> e ⟫)))
((transportId (λ f 𝓓 [ f v , f w ]) p
((transportEq (λ f 𝓓 [ f v , f w ]) p
(𝓕 ⟪ ıG <$g> e ⟫))))
(transportRefl (𝓕 ⟪ ıG <$g> e ⟫))
ıϕ
Expand All @@ -189,7 +199,7 @@ module FreeFunctor (G : Graph ℓg ℓg')
(arb𝓓-agree : arb𝓓 ∘Interp ηH ≡ ıH)
(arb𝓕-agree : Square {A = G .Node 𝓓 .ob}
(λ i x arb𝓕 i ⟅ x ⟆)
(idToPath ıϕ)
(eqToPath ıϕ)
(λ i x 𝓕 ⟅ arb𝓒-agree i $g x ⟆)
(λ i x arb𝓓-agree i $g (ϕ x)))
where
Expand All @@ -214,27 +224,27 @@ module FreeFunctor (G : Graph ℓg ℓg')
aom-type g
aom-type (f ⋆ₑ g)
aom-seq hypf hypg = arb𝓓 .F-seq _ _ ◁ λ i hypf i ⋆⟨ 𝓓 ⟩ hypg i
ıϕp = idToPath ıϕ
ıϕp = eqToPath ıϕ

aom-F : {v w}
(e : FG [ v , w ])
PathP (λ i 𝓓 [ (arb𝓓-agree i $g (ϕ v))
, (arb𝓓-agree i $g (ϕ w)) ])
(arb𝓓 ⟪ Fϕ ⟪ e ⟫ ⟫)
(transportId (λ (f : G .Node 𝓓 .ob) 𝓓 [ f v , f w ])
(transportEq (λ (f : G .Node 𝓓 .ob) 𝓓 [ f v , f w ])
ıϕ
(𝓕 ⟪ semG ⟪ e ⟫ ⟫))
aom-F {v}{w} e =
pathified ▷ λ i
substIdToPath {B = λ (f : G .Node 𝓓 .ob) 𝓓 [ f v , f w ]}
ıϕ
i
(𝓕 ⟪ semG ⟪ e ⟫ ⟫)
pathified ▷ eqToPath (
substPath≡transport'
(λ (f : G .Node 𝓓 .ob) 𝓓 [ f v , f w ])
(𝓕 ⟪ semG ⟪ e ⟫ ⟫)
ıϕ)
where
pathified :
PathP (λ i 𝓓 [ arb𝓓-agree i $g ϕ v , arb𝓓-agree i $g ϕ w ])
(arb𝓓 ⟪ Fϕ ⟪ e ⟫ ⟫)
(transportPath (λ i 𝓓 [ ıϕp i v , ıϕp i w ])
(transport (λ i 𝓓 [ ıϕp i v , ıϕp i w ])
(𝓕 ⟪ semG ⟪ e ⟫ ⟫))
pathified = toPathP⁻ ((
fromPathP⁻ lem'
Expand Down

0 comments on commit 84761fe

Please sign in to comment.