-
Notifications
You must be signed in to change notification settings - Fork 143
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
2a54073
commit 3ee4974
Showing
3 changed files
with
102 additions
and
102 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,96 @@ | ||
{-# OPTIONS --safe #-} | ||
|
||
{- | ||
This file contians a proof that the smash product turns the universe | ||
of pointed types into a symmetric monoidal wild category. The pentagon | ||
and hexagon are proved in separate files due to the length of the | ||
proofs. The remaining identities and the main result are proved here. | ||
-} | ||
|
||
module Cubical.HITs.SmashProduct.SymmetricMonoidalCat where | ||
|
||
open import Cubical.Foundations.Prelude | ||
open import Cubical.Foundations.Pointed | ||
open import Cubical.Foundations.Isomorphism | ||
open import Cubical.Foundations.GroupoidLaws | ||
open import Cubical.Foundations.Path | ||
open import Cubical.Foundations.Equiv | ||
|
||
open import Cubical.Data.Unit | ||
open import Cubical.Data.Sigma using (ΣPathP) | ||
open import Cubical.Data.Bool | ||
open import Cubical.HITs.SmashProduct.Base | ||
open import Cubical.HITs.SmashProduct.Pentagon | ||
open import Cubical.HITs.SmashProduct.Hexagon | ||
open import Cubical.HITs.SmashProduct.SymmetricMonoidal | ||
|
||
open import Cubical.WildCat.Base | ||
open import Cubical.WildCat.Functor | ||
open import Cubical.WildCat.Product | ||
open import Cubical.WildCat.BraidedSymmetricMonoidal | ||
open import Cubical.WildCat.Instances.Pointed | ||
|
||
open WildCat | ||
open WildFunctor | ||
open isSymmetricWildCat | ||
open isMonoidalWildCat | ||
open WildNatIso | ||
open WildNatTrans | ||
open wildIsIso | ||
|
||
private | ||
variable | ||
ℓ ℓ' : Level | ||
|
||
-- ⋀ as a functor | ||
⋀F : ∀ {ℓ} → WildFunctor (PointedCat ℓ × PointedCat ℓ) (PointedCat ℓ) | ||
F-ob ⋀F (A , B) = A ⋀∙ B | ||
F-hom ⋀F (f , g) = f ⋀→∙ g | ||
F-id ⋀F = ⋀→∙-idfun | ||
F-seq ⋀F (f , g) (f' , g') = ⋀→∙-comp f f' g g' | ||
|
||
⋀lUnitNatIso : WildNatIso (PointedCat ℓ) (PointedCat ℓ) | ||
(restrFunctorₗ ⋀F Bool*∙) (idWildFunctor (PointedCat ℓ)) | ||
N-ob (trans ⋀lUnitNatIso) X = ≃∙map ⋀lIdEquiv∙ | ||
N-hom (trans ⋀lUnitNatIso) f = ⋀lId-sq f | ||
inv' (isIs ⋀lUnitNatIso c) = ≃∙map (invEquiv∙ ⋀lIdEquiv∙) | ||
sect (isIs (⋀lUnitNatIso {ℓ = ℓ}) c) = | ||
≃∙→ret/sec∙ (⋀lIdEquiv∙ {ℓ = ℓ} {A = c}) .snd | ||
retr (isIs ⋀lUnitNatIso c) = | ||
≃∙→ret/sec∙ ⋀lIdEquiv∙ .fst | ||
|
||
makeIsIso-Pointed : ∀ {ℓ} {A B : Pointed ℓ} {f : A →∙ B} | ||
→ isEquiv (fst f) → wildIsIso {C = PointedCat ℓ} f | ||
inv' (makeIsIso-Pointed {f = f} eq) = ≃∙map (invEquiv∙ ((fst f , eq) , snd f)) | ||
sect (makeIsIso-Pointed {f = f} eq) = ≃∙→ret/sec∙ ((fst f , eq) , snd f) .snd | ||
retr (makeIsIso-Pointed {f = f} eq) = ≃∙→ret/sec∙ ((fst f , eq) , snd f) .fst | ||
|
||
restrₗᵣ : WildNatIso (PointedCat ℓ) (PointedCat ℓ) | ||
(restrFunctorᵣ ⋀F Bool*∙) (restrFunctorₗ ⋀F Bool*∙) | ||
N-ob (trans restrₗᵣ) X = ⋀comm→∙ | ||
N-hom (trans restrₗᵣ) f = ⋀comm-sq f (idfun∙ Bool*∙) | ||
isIs restrₗᵣ c = makeIsIso-Pointed (isoToIsEquiv ⋀CommIso) | ||
|
||
-- main result | ||
⋀Symm : ∀ {ℓ} → isSymmetricWildCat (PointedCat ℓ) | ||
_⊗_ (isMonoidal ⋀Symm) = ⋀F | ||
𝟙 (isMonoidal ⋀Symm) = Bool*∙ | ||
N-ob (trans (⊗assoc (isMonoidal ⋀Symm))) (A , B , C) = ≃∙map SmashAssocEquiv∙ | ||
N-hom (trans (⊗assoc (isMonoidal ⋀Symm))) (f , g , h) = ⋀assoc-⋀→∙ f g h | ||
inv' (isIs (⊗assoc (isMonoidal ⋀Symm)) (A , B , C)) = | ||
≃∙map (invEquiv∙ SmashAssocEquiv∙) | ||
sect (isIs (⊗assoc (isMonoidal ⋀Symm)) (A , B , C)) = | ||
≃∙→ret/sec∙ SmashAssocEquiv∙ .snd | ||
retr (isIs (⊗assoc (isMonoidal ⋀Symm)) (A , B , C)) = | ||
≃∙→ret/sec∙ SmashAssocEquiv∙ .fst | ||
⊗lUnit (isMonoidal ⋀Symm) = ⋀lUnitNatIso | ||
⊗rUnit (isMonoidal ⋀Symm) = compWildNatIso _ _ _ restrₗᵣ ⋀lUnitNatIso | ||
triang (isMonoidal (⋀Symm {ℓ})) X Y = ⋀triang | ||
⊗pentagon (isMonoidal ⋀Symm) X Y Z W = | ||
(∘∙-assoc assc₅∙ assc₄∙ assc₃∙) ∙ pentagon∙ | ||
N-ob (trans (Braid ⋀Symm)) X = ⋀comm→∙ | ||
N-hom (trans (Braid ⋀Symm)) (f , g) = ⋀comm-sq f g | ||
isIs (Braid ⋀Symm) _ = makeIsIso-Pointed (isoToIsEquiv ⋀CommIso) | ||
isSymmetricWildCat.hexagon ⋀Symm a b c = hexagon∙ | ||
symBraiding ⋀Symm X Y = | ||
ΣPathP ((funExt (Iso.rightInv ⋀CommIso)) , (sym (rUnit refl))) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters