Skip to content

Commit

Permalink
Dom and Cod projections.
Browse files Browse the repository at this point in the history
  • Loading branch information
anuyts committed Oct 29, 2024
1 parent f8b2eef commit 2eba9c2
Showing 1 changed file with 19 additions and 0 deletions.
19 changes: 19 additions & 0 deletions Cubical/Categories/Displayed/Constructions/Fiber.agda
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,8 @@ open import Cubical.Categories.Functor.Base
open Functor
open import Cubical.Categories.Displayed.Base
open Categoryᴰ
open import Cubical.Categories.Constructions.TotalCategory.Base
open import Cubical.Categories.Constructions.TotalCategory.Properties as TC

private
variable
Expand Down Expand Up @@ -52,3 +54,20 @@ module _ {ℓC ℓC' ℓD ℓD'} {C : Category ℓC ℓC'} {D : Category ℓD
isSetHomᴰ FiberCᴰ {f = δ} = isSetΣ
(isSetHom C)
(λ c isOfHLevelPathP' 2 (isSet→isGroupoid (isSetHom D)) (F .F-hom c) δ)

∫FiberC : Category (ℓ-max ℓC ℓD) (ℓ-max ℓC' ℓD')
∫FiberC = ∫C FiberCᴰ

FiberCod : Functor ∫FiberC D
FiberCod = TC.Fst {C = D} {FiberCᴰ}

FiberDom : Functor ∫FiberC C
F-ob FiberDom (d , c , c↦d) = c
F-hom FiberDom (δ , γ , γ↦δ) = γ
F-id FiberDom = refl
F-seq FiberDom _ _ = refl

fiberFactors : funcComp F FiberDom ≡ FiberCod
fiberFactors = Functor≡
(λ (d , c , c↦d) c↦d)
λ {(d , c , c↦d)} {(d' , c' , c'↦d')} (δ , γ , γ↦δ) γ↦δ

0 comments on commit 2eba9c2

Please sign in to comment.