Skip to content

Commit

Permalink
uncomment some working code
Browse files Browse the repository at this point in the history
  • Loading branch information
marcinjangrzybowski committed Jan 22, 2025
1 parent 0f5b3fc commit 1143bc9
Showing 1 changed file with 18 additions and 18 deletions.
36 changes: 18 additions & 18 deletions Cubical/HITs/CauchyReals/Derivative.agda
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@ open import Cubical.Data.Sigma

open import Cubical.HITs.PropositionalTruncation as PT
open import Cubical.Data.NatPlusOne

open import Cubical.Data.Nat as ℕ hiding (_·_;_+_)

open import Cubical.Data.Rationals as ℚ using (ℚ ; [_/_])
open import Cubical.Data.Rationals.Order as ℚ using
Expand Down Expand Up @@ -354,23 +354,23 @@ C·Derivative' C x f f'x F =
-- → IsContinuous f
-- hasDer→isCont f f' df ε = {!df!}

-- -- derivative-^ⁿ : ∀ n x →
-- -- derivativeOf (_^ⁿ (suc n)) at x
-- -- is (fromNat (suc n) ·ᵣ (x ^ⁿ n))
-- -- derivative-^ⁿ zero x =
-- -- substDer₂
-- -- (λ _ → sym (·IdL _))
-- -- (sym (·IdL _))
-- -- (idDerivative x)
-- -- derivative-^ⁿ (suc n) x =
-- -- substDer₂ (λ _ → refl)
-- -- (+ᵣComm _ _ ∙ cong₂ _+ᵣ_
-- -- (·ᵣComm _ _) (sym (·ᵣAssoc _ _ _)) ∙
-- -- sym (·DistR+ _ _ _) ∙
-- -- cong (_·ᵣ ((x ^ⁿ n) ·ᵣ idfun ℝ x))
-- -- (cong rat (ℚ.ℕ+→ℚ+ _ _)))
-- -- (·Derivative _ _ _ _ _ IsContinuousId
-- -- (derivative-^ⁿ n x) (idDerivative x))
derivative-^ⁿ : n x
derivativeOf (_^ⁿ (suc n)) at x
is (fromNat (suc n) ·ᵣ (x ^ⁿ n))
derivative-^ⁿ zero x =
substDer₂
(λ _ sym (·IdL _))
(sym (·IdL _))
(idDerivative x)
derivative-^ⁿ (suc n) x =
substDer₂ (λ _ refl)
(+ᵣComm _ _ ∙ cong₂ _+ᵣ_
(·ᵣComm _ _) (sym (·ᵣAssoc _ _ _)) ∙
sym (·DistR+ _ _ _) ∙
cong (_·ᵣ ((x ^ⁿ n) ·ᵣ idfun ℝ x))
(cong rat (ℚ.ℕ+→ℚ+ _ _)))
(·Derivative _ _ _ _ _ IsContinuousId
(derivative-^ⁿ n x) (idDerivative x))

-- -- -- chainRule : ∀ x f f'gx g g'x
-- -- -- → derivativeOf g at x is g'x
Expand Down

0 comments on commit 1143bc9

Please sign in to comment.