-
Notifications
You must be signed in to change notification settings - Fork 260
[ add ] Nat lemmas with _∸_, _⊔_ and _⊓_
#2924
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: master
Are you sure you want to change the base?
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -1634,6 +1634,15 @@ m≤n⇒n∸m≤n (s≤s m≤n) = m≤n⇒m≤1+n (m≤n⇒n∸m≤n m≤n) | |
| suc ((m + n) ∸ o) ≡⟨ cong suc (+-∸-assoc m o≤n) ⟩ | ||
| suc (m + (n ∸ o)) ∎ | ||
|
|
||
| m∸n+o≡m∸[n∸o] : ∀ {m n o} → n ≤ m → o ≤ n → (m ∸ n) + o ≡ m ∸ (n ∸ o) | ||
| m∸n+o≡m∸[n∸o] {m} {zero} {zero} z≤n _ = +-identityʳ m | ||
| m∸n+o≡m∸[n∸o] {suc m} {suc n} {zero} (s≤s n≤m) z≤n = +-identityʳ (m ∸ n) | ||
| m∸n+o≡m∸[n∸o] {suc m} {suc n} {suc o} (s≤s n≤m) (s≤s o≤n) = begin-equality | ||
| suc m ∸ suc n + suc o ≡⟨ +-suc (m ∸ n) o ⟩ | ||
| suc (m ∸ n + o) ≡⟨ cong suc (m∸n+o≡m∸[n∸o] n≤m o≤n) ⟩ | ||
| suc (m ∸ (n ∸ o)) ≡⟨ ∸-suc (≤-trans (m∸n≤m n o) n≤m) ⟨ | ||
| suc m ∸ (n ∸ o) ∎ | ||
|
|
||
| m≤n+o⇒m∸n≤o : ∀ m n {o} → m ≤ n + o → m ∸ n ≤ o | ||
| m≤n+o⇒m∸n≤o m zero le = le | ||
| m≤n+o⇒m∸n≤o zero (suc n) _ = z≤n | ||
|
|
@@ -1722,11 +1731,30 @@ even≢odd (suc m) (suc n) eq = even≢odd m n (suc-injective (begin-equality | |
| ------------------------------------------------------------------------ | ||
| -- Properties of _∸_ and _⊓_ and _⊔_ | ||
|
|
||
| m∸n≤m⊔n : ∀ m n → m ∸ n ≤ m ⊔ n | ||
| m∸n≤m⊔n m n = ≤-trans (m∸n≤m m n) (m≤m⊔n m n) | ||
|
|
||
| m⊓n+n∸m≡n : ∀ m n → (m ⊓ n) + (n ∸ m) ≡ n | ||
| m⊓n+n∸m≡n zero n = refl | ||
| m⊓n+n∸m≡n (suc m) zero = refl | ||
| m⊓n+n∸m≡n (suc m) (suc n) = cong suc $ m⊓n+n∸m≡n m n | ||
|
|
||
| m⊔n∸[m∸n]≡n : ∀ m n → m ⊔ n ∸ (m ∸ n) ≡ n | ||
| m⊔n∸[m∸n]≡n zero n = cong (n ∸_) (0∸n≡0 n) | ||
| m⊔n∸[m∸n]≡n (suc m) zero = n∸n≡0 m | ||
| m⊔n∸[m∸n]≡n (suc m) (suc n) = begin-equality | ||
| suc (m ⊔ n) ∸ (m ∸ n) ≡⟨ ∸-suc (m∸n≤m⊔n m n) ⟩ | ||
| suc ((m ⊔ n) ∸ (m ∸ n)) ≡⟨ cong suc (m⊔n∸[m∸n]≡n m n) ⟩ | ||
| suc n ∎ | ||
|
|
||
| m⊔n≡m∸n+n : ∀ m n → m ⊔ n ≡ m ∸ n + n | ||
| m⊔n≡m∸n+n zero n = sym (cong (_+ n) (0∸n≡0 n)) | ||
| m⊔n≡m∸n+n (suc m) zero = sym (cong suc (+-identityʳ m)) | ||
| m⊔n≡m∸n+n (suc m) (suc n) = begin-equality | ||
| suc (m ⊔ n) ≡⟨ cong suc (m⊔n≡m∸n+n m n) ⟩ | ||
| suc (m ∸ n + n) ≡⟨ +-suc (m ∸ n) n ⟨ | ||
| m ∸ n + suc n ∎ | ||
|
|
||
| [m∸n]⊓[n∸m]≡0 : ∀ m n → (m ∸ n) ⊓ (n ∸ m) ≡ 0 | ||
| [m∸n]⊓[n∸m]≡0 zero zero = refl | ||
| [m∸n]⊓[n∸m]≡0 zero (suc n) = refl | ||
|
|
@@ -1844,6 +1872,17 @@ m∸n≤∣m-n∣ m n with ≤-total m n | |
| ∣m-n∣≤m⊔n (suc m) zero = ≤-refl | ||
| ∣m-n∣≤m⊔n (suc m) (suc n) = m≤n⇒m≤1+n (∣m-n∣≤m⊔n m n) | ||
|
|
||
| ∣m-n∣≡m⊔n∸m⊓n : ∀ m n → ∣ m - n ∣ ≡ m ⊔ n ∸ m ⊓ n | ||
|
Collaborator
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. The structure of this proof recalls that of Separately, you might like to consider refactoring this proof to not use |
||
| ∣m-n∣≡m⊔n∸m⊓n m n with ≤-total m n | ||
| ... | inj₁ m≤n = begin-equality | ||
| ∣ m - n ∣ ≡⟨ m≤n⇒∣m-n∣≡n∸m m≤n ⟩ | ||
| n ∸ m ≡⟨ cong₂ _∸_ (m≤n⇒m⊔n≡n m≤n) (m≤n⇒m⊓n≡m m≤n) ⟨ | ||
| m ⊔ n ∸ m ⊓ n ∎ | ||
| ... | inj₂ n≤m = begin-equality | ||
| ∣ m - n ∣ ≡⟨ m≤n⇒∣n-m∣≡n∸m n≤m ⟩ | ||
| m ∸ n ≡⟨ cong₂ _∸_ (m≥n⇒m⊔n≡m n≤m) (m≥n⇒m⊓n≡n n≤m) ⟨ | ||
| m ⊔ n ∸ m ⊓ n ∎ | ||
|
|
||
| ∣-∣-identityˡ : LeftIdentity 0 ∣_-_∣ | ||
| ∣-∣-identityˡ x = refl | ||
|
|
||
|
|
||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This property doesn't feel natural to me, and the definition is short enough I don't really think it needs a name
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
It looks kind of similar to the m⊔n≤m+n that is already here.