-
Notifications
You must be signed in to change notification settings - Fork 247
[Add] Consequences of associativity for Semigroup
s
#2688
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: master
Are you sure you want to change the base?
Changes from all commits
0fc076f
3399c61
90fe273
ef3282f
63e88cc
bb7ce15
885d7a0
ad54a5b
2b511c2
8151123
2361b40
503c693
0d5c9ed
1a67eb9
002cfad
a47bcc5
ca9f576
e07f81b
86b06e0
7b72ff2
13b5f0e
f58aceb
74607d5
e3b2550
e63afbd
b2bfa03
14224b9
76b6637
06af327
a22f97d
1283b57
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change | ||||
---|---|---|---|---|---|---|
|
@@ -10,9 +10,15 @@ open import Algebra using (Semigroup) | |||||
|
||||||
module Algebra.Properties.Semigroup {a ℓ} (S : Semigroup a ℓ) where | ||||||
|
||||||
open import Data.Product.Base using (_,_) | ||||||
|
||||||
open Semigroup S | ||||||
open import Algebra.Definitions _≈_ | ||||||
open import Data.Product.Base using (_,_) | ||||||
open import Relation.Binary.Reasoning.Setoid setoid | ||||||
|
||||||
private | ||||||
variable | ||||||
u v w x y z : Carrier | ||||||
|
||||||
x∙yz≈xy∙z : ∀ x y z → x ∙ (y ∙ z) ≈ (x ∙ y) ∙ z | ||||||
x∙yz≈xy∙z x y z = sym (assoc x y z) | ||||||
|
@@ -28,3 +34,91 @@ alternative = alternativeˡ , alternativeʳ | |||||
|
||||||
flexible : Flexible _∙_ | ||||||
flexible x y = assoc x y x | ||||||
|
||||||
module _ (uv≈w : u ∙ v ≈ w) where | ||||||
uv≈w⇒xu∙v≈xw : ∀ x → (x ∙ u) ∙ v ≈ x ∙ w | ||||||
uv≈w⇒xu∙v≈xw x = trans (assoc x u v) (∙-congˡ uv≈w) | ||||||
|
||||||
uv≈w⇒u∙vx≈wx : ∀ x → u ∙ (v ∙ x) ≈ w ∙ x | ||||||
uv≈w⇒u∙vx≈wx x = trans (sym (assoc u v x)) (∙-congʳ uv≈w) | ||||||
|
||||||
uv≈w⇒u[vx∙y]≈w∙xy : ∀ x y → u ∙ ((v ∙ x) ∙ y) ≈ w ∙ (x ∙ y) | ||||||
uv≈w⇒u[vx∙y]≈w∙xy x y = trans (∙-congˡ (assoc v x y)) (uv≈w⇒u∙vx≈wx (x ∙ y)) | ||||||
|
||||||
uv≈w⇒x[uv∙y]≈x∙wy : ∀ x y → x ∙ (u ∙ (v ∙ y)) ≈ x ∙ (w ∙ y) | ||||||
uv≈w⇒x[uv∙y]≈x∙wy x y = ∙-congˡ (uv≈w⇒u∙vx≈wx y) | ||||||
|
||||||
uv≈w⇒[x∙yu]v≈x∙yw : ∀ x y → (x ∙ (y ∙ u)) ∙ v ≈ x ∙ (y ∙ w) | ||||||
uv≈w⇒[x∙yu]v≈x∙yw x y = trans (assoc x (y ∙ u) v) (∙-congˡ (uv≈w⇒xu∙v≈xw y)) | ||||||
|
||||||
uv≈w⇒[xu∙v]y≈x∙wy : ∀ x y → ((x ∙ u) ∙ v) ∙ y ≈ x ∙ (w ∙ y) | ||||||
uv≈w⇒[xu∙v]y≈x∙wy x y = trans (∙-congʳ (uv≈w⇒xu∙v≈xw x)) (assoc x w y) | ||||||
|
||||||
uv≈w⇒[xy∙u]v≈x∙yw : ∀ x y → ((x ∙ y) ∙ u) ∙ v ≈ x ∙ (y ∙ w) | ||||||
uv≈w⇒[xy∙u]v≈x∙yw x y = trans (∙-congʳ (assoc x y u)) (uv≈w⇒[x∙yu]v≈x∙yw x y ) | ||||||
jmougeot marked this conversation as resolved.
Show resolved
Hide resolved
|
||||||
|
||||||
module _ (uv≈w : u ∙ v ≈ w) where | ||||||
uv≈w⇒xw≈xu∙v : ∀ x → x ∙ w ≈ (x ∙ u) ∙ v | ||||||
uv≈w⇒xw≈xu∙v x = sym (uv≈w⇒xu∙v≈xw uv≈w x) | ||||||
|
||||||
uv≈w⇒wx≈u∙vx : ∀ x → w ∙ x ≈ u ∙ (v ∙ x) | ||||||
uv≈w⇒wx≈u∙vx x = sym (uv≈w⇒u∙vx≈wx uv≈w x) | ||||||
|
||||||
uv≈w⇒w∙xy≈u[vx∙y] : ∀ x y → w ∙ (x ∙ y) ≈ u ∙ ((v ∙ x) ∙ y) | ||||||
uv≈w⇒w∙xy≈u[vx∙y] x y = sym (uv≈w⇒u[vx∙y]≈w∙xy uv≈w x y) | ||||||
|
||||||
uv≈w⇒x∙wy≈x[u∙vy] : ∀ x y → x ∙ (w ∙ y) ≈ x ∙ (u ∙ (v ∙ y)) | ||||||
uv≈w⇒x∙wy≈x[u∙vy] x y = sym (uv≈w⇒x[uv∙y]≈x∙wy uv≈w x y) | ||||||
|
||||||
uv≈w⇒x∙yw≈[x∙yu]v : ∀ x y → x ∙ (y ∙ w) ≈ (x ∙ (y ∙ u)) ∙ v | ||||||
uv≈w⇒x∙yw≈[x∙yu]v x y = sym (uv≈w⇒[x∙yu]v≈x∙yw uv≈w x y) | ||||||
|
||||||
uv≈w⇒xu∙vy≈x∙wy : ∀ x y → (x ∙ u) ∙ (v ∙ y) ≈ x ∙ (w ∙ y) | ||||||
uv≈w⇒xu∙vy≈x∙wy x y = uv≈w⇒xu∙v≈xw (uv≈w⇒u∙vx≈wx uv≈w y) x | ||||||
|
||||||
uv≈w⇒xy≈z⇒u[vx∙y]≈wz : ∀ z → x ∙ y ≈ z → u ∙ ((v ∙ x) ∙ y) ≈ w ∙ z | ||||||
uv≈w⇒xy≈z⇒u[vx∙y]≈wz z xy≈z = trans (∙-congˡ (uv≈w⇒xu∙v≈xw xy≈z v)) (uv≈w⇒u∙vx≈wx uv≈w z) | ||||||
jmougeot marked this conversation as resolved.
Show resolved
Hide resolved
|
||||||
|
||||||
uv≈w⇒x∙wy≈x∙[u∙vy] : x ∙ (w ∙ y) ≈ x ∙ (u ∙ (v ∙ y)) | ||||||
uv≈w⇒x∙wy≈x∙[u∙vy] = sym (uv≈w⇒x[uv∙y]≈x∙wy uv≈w _ _) | ||||||
jmougeot marked this conversation as resolved.
Show resolved
Hide resolved
|
||||||
|
||||||
module _ {u v w x : Carrier} where | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. These will need to be explicit... for the usual reasons, but there's no need to make
Suggested change
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I'm not sure why this was marked as |
||||||
[uv∙w]x≈u[vw∙x] : ((u ∙ v) ∙ w) ∙ x ≈ u ∙ ((v ∙ w) ∙ x) | ||||||
[uv∙w]x≈u[vw∙x] = uv≈w⇒[xu∙v]y≈x∙wy refl u x | ||||||
|
||||||
[uv∙w]x≈u[v∙wx] : ((u ∙ v) ∙ w) ∙ x ≈ u ∙ (v ∙ (w ∙ x)) | ||||||
[uv∙w]x≈u[v∙wx] = uv≈w⇒[xy∙u]v≈x∙yw refl u v | ||||||
|
||||||
[u∙vw]x≈uv∙wx : (u ∙ (v ∙ w)) ∙ x ≈ (u ∙ v) ∙ (w ∙ x) | ||||||
[u∙vw]x≈uv∙wx = trans (sym (∙-congʳ (assoc u v w))) (assoc (u ∙ v) w x) | ||||||
|
||||||
[u∙vw]x≈u[v∙wx] : (u ∙ (v ∙ w)) ∙ x ≈ u ∙ (v ∙ (w ∙ x)) | ||||||
[u∙vw]x≈u[v∙wx] = uv≈w⇒[x∙yu]v≈x∙yw refl u v | ||||||
|
||||||
uv∙wx≈u[vw∙x] : (u ∙ v) ∙ (w ∙ x) ≈ u ∙ ((v ∙ w) ∙ x) | ||||||
uv∙wx≈u[vw∙x] = uv≈w⇒xu∙vy≈x∙wy refl u x | ||||||
|
||||||
uv∙wx≈[u∙vw]x : (u ∙ v) ∙ (w ∙ x) ≈ (u ∙ (v ∙ w)) ∙ x | ||||||
uv∙wx≈[u∙vw]x = sym [u∙vw]x≈uv∙wx | ||||||
|
||||||
u[vw∙x]≈[uv∙w]x : u ∙ ((v ∙ w) ∙ x) ≈ ((u ∙ v) ∙ w) ∙ x | ||||||
u[vw∙x]≈[uv∙w]x = sym [uv∙w]x≈u[vw∙x] | ||||||
|
||||||
u[vw∙x]≈uv∙wx : u ∙ ((v ∙ w) ∙ x) ≈ (u ∙ v) ∙ (w ∙ x) | ||||||
u[vw∙x]≈uv∙wx = sym uv∙wx≈u[vw∙x] | ||||||
|
||||||
u[v∙wx]≈[uv∙w]x : u ∙ (v ∙ (w ∙ x)) ≈ ((u ∙ v) ∙ w) ∙ x | ||||||
u[v∙wx]≈[uv∙w]x = sym [uv∙w]x≈u[v∙wx] | ||||||
|
||||||
u[v∙wx]≈[u∙vw]x : u ∙ (v ∙ (w ∙ x)) ≈ (u ∙ (v ∙ w)) ∙ x | ||||||
u[v∙wx]≈[u∙vw]x = sym [u∙vw]x≈u[v∙wx] | ||||||
|
||||||
module _ {u v w x : Carrier} (uv≈wx : u ∙ v ≈ w ∙ x) where | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Finally, here:
Suggested change
because the There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Nor this, because it hasn't been fixed yet. |
||||||
uv≈wx⇒yu∙v≈yw∙x : ∀ y → (y ∙ u) ∙ v ≈ (y ∙ w) ∙ x | ||||||
uv≈wx⇒yu∙v≈yw∙x y = trans (uv≈w⇒xu∙v≈xw uv≈wx y) (sym (assoc y w x)) | ||||||
|
||||||
uv≈wx⇒u∙vy≈w∙xy : ∀ y → u ∙ (v ∙ y) ≈ w ∙ (x ∙ y) | ||||||
uv≈wx⇒u∙vy≈w∙xy y = trans (uv≈w⇒u∙vx≈wx uv≈wx y) (assoc w x y) | ||||||
|
||||||
uv≈wx⇒yu∙vz≈yw∙xz : ∀ y z → (y ∙ u) ∙ (v ∙ z) ≈ (y ∙ w) ∙ (x ∙ z) | ||||||
uv≈wx⇒yu∙vz≈yw∙xz y z = trans (uv≈w⇒xu∙v≈xw (uv≈wx⇒u∙vy≈w∙xy z) y) (sym (assoc y w (x ∙ z))) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Need to insert here all the new names, once we have (eventually) agree them...
etc.