Skip to content

Vec.Properties: introduce ≈-cong′ #2424

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 8 commits into from
Jan 3, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 7 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -540,6 +540,13 @@ Additions to existing modules
map-concat : map f (concat xss) ≡ concat (map (map f) xss)
```

* New lemma in `Data.Vec.Relation.Binary.Equality.Cast`:
```agda
≈-cong′ : ∀ {f-len : ℕ → ℕ} (f : ∀ {n} → Vec A n → Vec B (f-len n))
{m n} {xs : Vec A m} {ys : Vec A n} .{eq} →
xs ≈[ eq ] ys → f xs ≈[ _ ] f ys
```

* In `Data.Vec.Relation.Binary.Equality.DecPropositional`:
```agda
_≡?_ : DecidableEquality (Vec A n)
Expand Down
9 changes: 4 additions & 5 deletions doc/README/Data/Vec/Relation/Binary/Equality/Cast.agda
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@ open import Data.Nat.Properties
open import Data.Vec.Base
open import Data.Vec.Properties
open import Data.Vec.Relation.Binary.Equality.Cast
open import Function using (_∘_)
open import Relation.Binary.PropositionalEquality
using (_≡_; refl; sym; cong; module ≡-Reasoning)

Expand Down Expand Up @@ -187,7 +188,7 @@ example3a-fromList-++-++ {xs = xs} {ys} {zs} eq = begin
fromList (xs List.++ ys List.++ zs)
≈⟨ fromList-++ xs ⟩
fromList xs ++ fromList (ys List.++ zs)
≈⟨ ≈-cong (fromList xs ++_) (cast-++ʳ (List.length-++ ys) (fromList xs)) (fromList-++ ys) ⟩
≈⟨ ≈-cong (fromList xs ++_) (fromList-++ ys) ⟩
fromList xs ++ fromList ys ++ fromList zs
where open CastReasoning
Expand Down Expand Up @@ -218,9 +219,7 @@ example4-cong² : ∀ .(eq : (m + 1) + n ≡ n + suc m) a (xs : Vec A m) ys →
cast eq (reverse ((xs ++ [ a ]) ++ ys)) ≡ ys ʳ++ reverse (xs ∷ʳ a)
example4-cong² {m = m} {n} eq a xs ys = begin
reverse ((xs ++ [ a ]) ++ ys)
≈⟨ ≈-cong reverse (cast-reverse (cong (_+ n) (+-comm 1 m)) ((xs ∷ʳ a) ++ ys))
(≈-cong (_++ ys) (cast-++ˡ (+-comm 1 m) (xs ∷ʳ a))
(unfold-∷ʳ-eqFree a xs)) ⟨
≈⟨ ≈-cong′ (reverse ∘ (_++ ys)) (unfold-∷ʳ-eqFree a xs) ⟨
reverse ((xs ∷ʳ a) ++ ys)
≈⟨ reverse-++-eqFree (xs ∷ʳ a) ys ⟩
reverse ys ++ reverse (xs ∷ʳ a)
Expand Down Expand Up @@ -264,7 +263,7 @@ example6a-reverse-∷ʳ {n = n} x xs = begin-≡
reverse (xs ∷ʳ x)
≡⟨ ≈-reflexive refl ⟨
reverse (xs ∷ʳ x)
≈⟨ ≈-cong reverse (cast-reverse _ _) (unfold-∷ʳ-eqFree x xs) ⟩
≈⟨ ≈-cong reverse (unfold-∷ʳ-eqFree x xs) ⟩
reverse (xs ++ [ x ])
≈⟨ reverse-++-eqFree xs [ x ] ⟩
x ∷ reverse xs
Expand Down
37 changes: 11 additions & 26 deletions src/Data/Vec/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -375,6 +375,8 @@ lookup∘update′ {i = i} {j} i≢j xs y = lookup∘updateAt′ i j i≢j xs
open VecCast public
using (cast-is-id; cast-trans)

open VecCast using (≈-cong′)

subst-is-cast : (eq : m ≡ n) (xs : Vec A m) → subst (Vec A) eq xs ≡ cast eq xs
subst-is-cast refl xs = sym (cast-is-id refl xs)

Expand All @@ -398,9 +400,7 @@ map-const (_ ∷ xs) y = cong (y ∷_) (map-const xs y)

map-cast : (f : A → B) .(eq : m ≡ n) (xs : Vec A m) →
map f (cast eq xs) ≡ cast eq (map f xs)
map-cast {n = zero} f eq [] = refl
map-cast {n = suc _} f eq (x ∷ xs)
= cong (f x ∷_) (map-cast f (suc-injective eq) xs)
map-cast f _ _ = sym (≈-cong′ (map f) refl)

map-++ : ∀ (f : A → B) (xs : Vec A m) (ys : Vec A n) →
map f (xs ++ ys) ≡ map f xs ++ map f ys
Expand Down Expand Up @@ -494,13 +494,11 @@ toList-map f (x ∷ xs) = cong (f x List.∷_) (toList-map f xs)

cast-++ˡ : ∀ .(eq : m ≡ o) (xs : Vec A m) {ys : Vec A n} →
cast (cong (_+ n) eq) (xs ++ ys) ≡ cast eq xs ++ ys
cast-++ˡ {o = zero} eq [] {ys} = cast-is-id refl (cast eq [] ++ ys)
cast-++ˡ {o = suc o} eq (x ∷ xs) {ys} = cong (x ∷_) (cast-++ˡ (cong pred eq) xs)
cast-++ˡ _ _ {ys} = ≈-cong′ (_++ ys) refl

cast-++ʳ : ∀ .(eq : n ≡ o) (xs : Vec A m) {ys : Vec A n} →
cast (cong (m +_) eq) (xs ++ ys) ≡ xs ++ cast eq ys
cast-++ʳ {m = zero} eq [] {ys} = refl
cast-++ʳ {m = suc m} eq (x ∷ xs) {ys} = cong (x ∷_) (cast-++ʳ eq xs)
cast-++ʳ _ xs = ≈-cong′ (xs ++_) refl

lookup-++-< : ∀ (xs : Vec A m) (ys : Vec A n) →
∀ i (i<m : toℕ i < m) →
Expand Down Expand Up @@ -929,8 +927,7 @@ map-∷ʳ f x (y ∷ xs) = cong (f y ∷_) (map-∷ʳ f x xs)

cast-∷ʳ : ∀ .(eq : suc n ≡ suc m) x (xs : Vec A n) →
cast eq (xs ∷ʳ x) ≡ (cast (cong pred eq) xs) ∷ʳ x
cast-∷ʳ {m = zero} eq x [] = refl
cast-∷ʳ {m = suc m} eq x (y ∷ xs) = cong (y ∷_) (cast-∷ʳ (cong pred eq) x xs)
cast-∷ʳ _ x _ = ≈-cong′ (_∷ʳ x) refl

-- _++_ and _∷ʳ_

Expand Down Expand Up @@ -1034,23 +1031,14 @@ reverse-++-eqFree : ∀ (xs : Vec A m) (ys : Vec A n) → let eq = +-comm m n in
reverse-++-eqFree {m = zero} {n = n} [] ys = ≈-sym (++-identityʳ-eqFree (reverse ys))
reverse-++-eqFree {m = suc m} {n = n} (x ∷ xs) ys = begin
reverse (x ∷ xs ++ ys) ≂⟨ reverse-∷ x (xs ++ ys) ⟩
reverse (xs ++ ys) ∷ʳ x ≈⟨ ≈-cong (_∷ʳ x) (cast-∷ʳ (cong suc (+-comm m n)) x (reverse (xs ++ ys)))
(reverse-++-eqFree xs ys) ⟩
reverse (xs ++ ys) ∷ʳ x ≈⟨ ≈-cong′ (_∷ʳ x) (reverse-++-eqFree xs ys) ⟩
(reverse ys ++ reverse xs) ∷ʳ x ≈⟨ ++-∷ʳ-eqFree x (reverse ys) (reverse xs) ⟩
reverse ys ++ (reverse xs ∷ʳ x) ≂⟨ cong (reverse ys ++_) (reverse-∷ x xs) ⟨
reverse ys ++ (reverse (x ∷ xs)) ∎
where open CastReasoning

cast-reverse : ∀ .(eq : m ≡ n) → cast eq ∘ reverse {A = A} {n = m} ≗ reverse ∘ cast eq
cast-reverse {n = zero} eq [] = refl
cast-reverse {n = suc n} eq (x ∷ xs) = begin
reverse (x ∷ xs) ≂⟨ reverse-∷ x xs ⟩
reverse xs ∷ʳ x ≈⟨ ≈-cong (_∷ʳ x) (cast-∷ʳ eq x (reverse xs))
(cast-reverse (cong pred eq) xs) ⟩
reverse (cast _ xs) ∷ʳ x ≂⟨ reverse-∷ x (cast (cong pred eq) xs) ⟨
reverse (x ∷ cast _ xs) ≈⟨⟩
reverse (cast eq (x ∷ xs)) ∎
where open CastReasoning
cast-reverse _ _ = ≈-cong′ reverse refl

------------------------------------------------------------------------
-- _ʳ++_
Expand Down Expand Up @@ -1094,8 +1082,7 @@ map-ʳ++ {ys = ys} f xs = begin
cast eq ((xs ++ ys) ʳ++ zs) ≡ ys ʳ++ (xs ʳ++ zs)
++-ʳ++-eqFree {m = m} {n} {o} xs {ys} {zs} = begin
((xs ++ ys) ʳ++ zs) ≂⟨ unfold-ʳ++ (xs ++ ys) zs ⟩
reverse (xs ++ ys) ++ zs ≈⟨ ≈-cong (_++ zs) (cast-++ˡ (+-comm m n) (reverse (xs ++ ys)))
(reverse-++-eqFree xs ys) ⟩
reverse (xs ++ ys) ++ zs ≈⟨ ≈-cong′ (_++ zs) (reverse-++-eqFree xs ys) ⟩
(reverse ys ++ reverse xs) ++ zs ≈⟨ ++-assoc-eqFree (reverse ys) (reverse xs) zs ⟩
reverse ys ++ (reverse xs ++ zs) ≂⟨ cong (reverse ys ++_) (unfold-ʳ++ xs zs) ⟨
reverse ys ++ (xs ʳ++ zs) ≂⟨ unfold-ʳ++ ys (xs ʳ++ zs) ⟨
Expand All @@ -1107,8 +1094,7 @@ map-ʳ++ {ys = ys} f xs = begin
ʳ++-ʳ++-eqFree {m = m} {n} {o} xs {ys} {zs} = begin
(xs ʳ++ ys) ʳ++ zs ≂⟨ cong (_ʳ++ zs) (unfold-ʳ++ xs ys) ⟩
(reverse xs ++ ys) ʳ++ zs ≂⟨ unfold-ʳ++ (reverse xs ++ ys) zs ⟩
reverse (reverse xs ++ ys) ++ zs ≈⟨ ≈-cong (_++ zs) (cast-++ˡ (+-comm m n) (reverse (reverse xs ++ ys)))
(reverse-++-eqFree (reverse xs) ys) ⟩
reverse (reverse xs ++ ys) ++ zs ≈⟨ ≈-cong′ (_++ zs) (reverse-++-eqFree (reverse xs) ys) ⟩
(reverse ys ++ reverse (reverse xs)) ++ zs ≂⟨ cong ((_++ zs) ∘ (reverse ys ++_)) (reverse-involutive xs) ⟩
(reverse ys ++ xs) ++ zs ≈⟨ ++-assoc-eqFree (reverse ys) xs zs ⟩
reverse ys ++ (xs ++ zs) ≂⟨ unfold-ʳ++ ys (xs ++ zs) ⟨
Expand Down Expand Up @@ -1338,8 +1324,7 @@ fromList-reverse (x List.∷ xs) = begin
fromList (List.reverse (x List.∷ xs)) ≈⟨ cast-fromList (List.ʳ++-defn xs) ⟩
fromList (List.reverse xs List.++ List.[ x ]) ≈⟨ fromList-++ (List.reverse xs) ⟩
fromList (List.reverse xs) ++ [ x ] ≈⟨ unfold-∷ʳ-eqFree x (fromList (List.reverse xs)) ⟨
fromList (List.reverse xs) ∷ʳ x ≈⟨ ≈-cong (_∷ʳ x) (cast-∷ʳ (cong suc (List.length-reverse xs)) _ _)
(fromList-reverse xs) ⟩
fromList (List.reverse xs) ∷ʳ x ≈⟨ ≈-cong′ (_∷ʳ x) (fromList-reverse xs) ⟩
reverse (fromList xs) ∷ʳ x ≂⟨ reverse-∷ x (fromList xs) ⟨
reverse (x ∷ fromList xs) ≈⟨⟩
reverse (fromList (x List.∷ xs)) ∎
Expand Down
21 changes: 16 additions & 5 deletions src/Data/Vec/Relation/Binary/Equality/Cast.agda
Original file line number Diff line number Diff line change
Expand Up @@ -10,8 +10,10 @@

{-# OPTIONS --cubical-compatible --safe #-}

module Data.Vec.Relation.Binary.Equality.Cast {a} {A : Set a} where
module Data.Vec.Relation.Binary.Equality.Cast where

open import Level using (Level)
open import Function.Base using (_∘_)
open import Data.Nat.Base using (ℕ; zero; suc)
open import Data.Nat.Properties using (suc-injective)
open import Data.Vec.Base
Expand All @@ -24,6 +26,8 @@ open import Relation.Binary.PropositionalEquality.Properties

private
variable
a b : Level
A B : Set a
l m n o : ℕ
xs ys zs : Vec A n

Expand All @@ -41,31 +45,38 @@ cast-trans {m = suc _} {n = suc _} {o = suc _} eq₁ eq₂ (x ∷ xs) =

infix 3 _≈[_]_

_≈[_]_ : ∀ {n m} → Vec A n → .(eq : n ≡ m) → Vec A m → Set a
_≈[_]_ : ∀ {n m} → Vec A n → .(eq : n ≡ m) → Vec A m → Set _
xs ≈[ eq ] ys = cast eq xs ≡ ys

------------------------------------------------------------------------
-- _≈[_]_ is ‘reflexive’, ‘symmetric’ and ‘transitive’

≈-reflexive : ∀ {n} → _≡_ ⇒ (λ xs ys → _≈[_]_ {n} xs refl ys)
≈-reflexive : ∀ {n} → _≡_ ⇒ (λ xs ys → _≈[_]_ {A = A} {n} xs refl ys)
≈-reflexive {x = x} eq = trans (cast-is-id refl x) eq

≈-sym : .{m≡n : m ≡ n} → Sym _≈[ m≡n ]_ _≈[ sym m≡n ]_
≈-sym : .{m≡n : m ≡ n} → Sym {A = Vec A m} _≈[ m≡n ]_ _≈[ sym m≡n ]_
≈-sym {m≡n = m≡n} {xs} {ys} xs≈ys = begin
cast (sym m≡n) ys ≡⟨ cong (cast (sym m≡n)) xs≈ys ⟨
cast (sym m≡n) (cast m≡n xs) ≡⟨ cast-trans m≡n (sym m≡n) xs ⟩
cast (trans m≡n (sym m≡n)) xs ≡⟨ cast-is-id (trans m≡n (sym m≡n)) xs ⟩
xs ∎
where open ≡-Reasoning

≈-trans : ∀ .{m≡n : m ≡ n} .{n≡o : n ≡ o} → Trans _≈[ m≡n ]_ _≈[ n≡o ]_ _≈[ trans m≡n n≡o ]_
≈-trans : ∀ .{m≡n : m ≡ n} .{n≡o : n ≡ o} →
Trans {A = Vec A m} _≈[ m≡n ]_ _≈[ n≡o ]_ _≈[ trans m≡n n≡o ]_
≈-trans {m≡n = m≡n} {n≡o} {xs} {ys} {zs} xs≈ys ys≈zs = begin
cast (trans m≡n n≡o) xs ≡⟨ cast-trans m≡n n≡o xs ⟨
cast n≡o (cast m≡n xs) ≡⟨ cong (cast n≡o) xs≈ys ⟩
cast n≡o ys ≡⟨ ys≈zs ⟩
zs ∎
where open ≡-Reasoning

≈-cong′ : ∀ {f-len : ℕ → ℕ} (f : ∀ {n} → Vec A n → Vec B (f-len n))
{m n} {xs : Vec A m} {ys : Vec A n} .{eq} → xs ≈[ eq ] ys →
f xs ≈[ cong f-len eq ] f ys
≈-cong′ f {m = zero} {n = zero} {xs = []} {ys = []} refl = cast-is-id refl (f [])
≈-cong′ f {m = suc m} {n = suc n} {xs = x ∷ xs} {ys = y ∷ ys} refl = ≈-cong′ (f ∘ (x ∷_)) refl

------------------------------------------------------------------------
-- Reasoning combinators

Expand Down
Loading