Skip to content

Lighten dependencies of Data.Nat.Induction #1698

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Feb 26, 2022
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 10 additions & 12 deletions src/Data/Nat/Induction.agda
Original file line number Diff line number Diff line change
Expand Up @@ -8,16 +8,14 @@

module Data.Nat.Induction where

open import Function
open import Data.Nat.Base
open import Data.Nat.Properties using (<⇒<′)
open import Data.Product
open import Data.Unit.Polymorphic
open import Data.Unit.Polymorphic.Base
open import Function.Base
open import Induction
open import Induction.WellFounded as WF
open import Level using (Level)
open import Relation.Binary.PropositionalEquality
open import Relation.Unary

private
variable
Expand All @@ -35,11 +33,11 @@ Rec : ∀ ℓ → RecStruct ℕ ℓ ℓ
Rec ℓ P zero = ⊤
Rec ℓ P (suc n) = P n

recBuilder : ∀ {ℓ} → RecursorBuilder (Rec ℓ)
recBuilder : RecursorBuilder (Rec ℓ)
recBuilder P f zero = _
recBuilder P f (suc n) = f n (recBuilder P f n)

rec : ∀ {ℓ} → Recursor (Rec ℓ)
rec : Recursor (Rec ℓ)
rec = build recBuilder

------------------------------------------------------------------------
Expand All @@ -49,18 +47,18 @@ CRec : ∀ ℓ → RecStruct ℕ ℓ ℓ
CRec ℓ P zero = ⊤
CRec ℓ P (suc n) = P n × CRec ℓ P n

cRecBuilder : ∀ {ℓ} → RecursorBuilder (CRec ℓ)
cRecBuilder : RecursorBuilder (CRec ℓ)
cRecBuilder P f zero = _
cRecBuilder P f (suc n) = f n ih , ih
where ih = cRecBuilder P f n

cRec : ∀ {ℓ} → Recursor (CRec ℓ)
cRec : Recursor (CRec ℓ)
cRec = build cRecBuilder

------------------------------------------------------------------------
-- Complete induction based on _<′_

<′-Rec : ∀ {ℓ} → RecStruct ℕ ℓ ℓ
<′-Rec : RecStruct ℕ ℓ ℓ
<′-Rec = WfRec _<′_

-- mutual definition
Expand All @@ -73,7 +71,7 @@ cRec = build cRecBuilder
<′-wellFounded′ (suc n) n <′-base = <′-wellFounded n
<′-wellFounded′ (suc n) m (<′-step m<n) = <′-wellFounded′ n m m<n

module _ {ℓ} where
module _ {ℓ : Level} where
open WF.All <′-wellFounded ℓ public
renaming ( wfRecBuilder to <′-recBuilder
; wfRec to <′-rec
Expand All @@ -83,7 +81,7 @@ module _ {ℓ} where
------------------------------------------------------------------------
-- Complete induction based on _<_

<-Rec : ∀ {ℓ} → RecStruct ℕ ℓ ℓ
<-Rec : RecStruct ℕ ℓ ℓ
<-Rec = WfRec _<_

<-wellFounded : WellFounded _<_
Expand All @@ -105,7 +103,7 @@ module _ {ℓ} where
<-wellFounded-skip (suc k) zero = <-wellFounded 0
<-wellFounded-skip (suc k) (suc n) = acc (λ m _ → <-wellFounded-skip k m)

module _ {ℓ} where
module _ {ℓ : Level} where
open WF.All <-wellFounded ℓ public
renaming ( wfRecBuilder to <-recBuilder
; wfRec to <-rec
Expand Down