Skip to content

Commit

Permalink
Rename things per review comments
Browse files Browse the repository at this point in the history
  • Loading branch information
Taneb committed Mar 12, 2024
1 parent 65b766b commit 001bc7a
Show file tree
Hide file tree
Showing 2 changed files with 20 additions and 20 deletions.
16 changes: 8 additions & 8 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -142,14 +142,14 @@ Additions to existing modules

* In `Data.List.Properties`:
```agda
applyUpTo-∷ʳ : applyUpTo f n ∷ʳ f n ≡ applyUpTo f (suc n)
applyDownFrom-∷ʳ : applyDownFrom (f ∘ suc) n ∷ʳ f 0 ≡ applyDownFrom f (suc n)
upTo-∷ʳ : upTo n ∷ʳ n ≡ upTo (suc n)
downFrom-∷ʳ : applyDownFrom suc n ∷ʳ 0 ≡ downFrom (suc n)
applyUpTo-applyDownFrom : reverse (applyUpTo f n) ≡ applyDownFrom f n
upTo-downFrom : reverse (upTo n) ≡ downFrom n
applyDownFrom-applyUpTo : reverse (applyDownFrom f n) ≡ applyUpTo f n
downFrom-upTo : reverse (downFrom n) ≡ upTo n
applyUpTo-∷ʳ : applyUpTo f n ∷ʳ f n ≡ applyUpTo f (suc n)
applyDownFrom-∷ʳ : applyDownFrom (f ∘ suc) n ∷ʳ f 0 ≡ applyDownFrom f (suc n)
upTo-∷ʳ : upTo n ∷ʳ n ≡ upTo (suc n)
downFrom-∷ʳ : applyDownFrom suc n ∷ʳ 0 ≡ downFrom (suc n)
reverse-applyUpTo : reverse (applyUpTo f n) ≡ applyDownFrom f n
reverse-downFrom : reverse (upTo n) ≡ downFrom n
reverse-applyDownFrom : reverse (applyDownFrom f n) ≡ applyUpTo f n
reverse-downFrom : reverse (downFrom n) ≡ upTo n
```

* In `Data.List.Relation.Unary.All.Properties`:
Expand Down
24 changes: 12 additions & 12 deletions src/Data/List/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -1190,27 +1190,27 @@ reverse-foldl f b xs = foldl-ʳ++ f b xs
------------------------------------------------------------------------
-- reverse, applyUpTo, and applyDownFrom

applyUpTo-applyDownFrom : (f : A) n reverse (applyUpTo f n) ≡ applyDownFrom f n
applyUpTo-applyDownFrom f zero = refl
applyUpTo-applyDownFrom f (suc n) = begin
reverse-applyUpTo : (f : A) n reverse (applyUpTo f n) ≡ applyDownFrom f n
reverse-applyUpTo f zero = refl
reverse-applyUpTo f (suc n) = begin
reverse (f 0 ∷ applyUpTo (f ∘ suc) n) ≡⟨ reverse-++ [ f 0 ] (applyUpTo (f ∘ suc) n) ⟩
reverse (applyUpTo (f ∘ suc) n) ∷ʳ f 0 ≡⟨ cong (_∷ʳ f 0) (applyUpTo-applyDownFrom (f ∘ suc) n) ⟩
reverse (applyUpTo (f ∘ suc) n) ∷ʳ f 0 ≡⟨ cong (_∷ʳ f 0) (reverse-applyUpTo (f ∘ suc) n) ⟩
applyDownFrom (f ∘ suc) n ∷ʳ f 0 ≡⟨ applyDownFrom-∷ʳ f n ⟩
applyDownFrom f (suc n) ∎

upTo-downFrom : n reverse (upTo n) ≡ downFrom n
upTo-downFrom = applyUpTo-applyDownFrom id
reverse-upTo : n reverse (upTo n) ≡ downFrom n
reverse-upTo = reverse-applyUpTo id

applyDownFrom-applyUpTo : (f : A) n reverse (applyDownFrom f n) ≡ applyUpTo f n
applyDownFrom-applyUpTo f zero = refl
applyDownFrom-applyUpTo f (suc n) = begin
reverse-applyDownFrom : (f : A) n reverse (applyDownFrom f n) ≡ applyUpTo f n
reverse-applyDownFrom f zero = refl
reverse-applyDownFrom f (suc n) = begin
reverse (f n ∷ applyDownFrom f n) ≡⟨ reverse-++ [ f n ] (applyDownFrom f n) ⟩
reverse (applyDownFrom f n) ∷ʳ f n ≡⟨ cong (_∷ʳ f n) (applyDownFrom-applyUpTo f n) ⟩
reverse (applyDownFrom f n) ∷ʳ f n ≡⟨ cong (_∷ʳ f n) (reverse-applyDownFrom f n) ⟩
applyUpTo f n ∷ʳ f n ≡⟨ applyUpTo-∷ʳ f n ⟩
applyUpTo f (suc n) ∎

downFrom-upTo : n reverse (downFrom n) ≡ upTo n
downFrom-upTo = applyDownFrom-applyUpTo id
reverse-downFrom : n reverse (downFrom n) ≡ upTo n
reverse-downFrom = reverse-applyDownFrom id

------------------------------------------------------------------------
-- _∷ʳ_
Expand Down

0 comments on commit 001bc7a

Please sign in to comment.