Skip to content

Commit

Permalink
feat: Add implementation of diff transformer
Browse files Browse the repository at this point in the history
  • Loading branch information
YeonwooSung committed Nov 30, 2024
1 parent 1d70781 commit c75cb7a
Show file tree
Hide file tree
Showing 4 changed files with 680 additions and 0 deletions.
334 changes: 334 additions & 0 deletions Transformers/src/diff_transformer/kernel/rotary.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,334 @@
# Copyright (c) 2023, Tri Dao.

from typing import Optional, Union

import torch

import triton
import triton.language as tl


# @triton.autotune(
# configs=[
# triton.Config({"BLOCK_M": 2}),
# triton.Config({"BLOCK_M": 4}),
# triton.Config({"BLOCK_M": 8}),
# triton.Config({"BLOCK_M": 16}),
# ],
# key=["CACHE_KEY_SEQLEN", "BLOCK_K", "INTERLEAVED"],
# )
@triton.jit
def rotary_kernel(
OUT, # Pointers to matrices
X,
COS,
SIN,
CU_SEQLENS,
SEQLEN_OFFSETS, # this could be int or a pointer
# Matrix dimensions
seqlen,
nheads,
rotary_dim,
seqlen_ro,
CACHE_KEY_SEQLEN,
# strides
stride_out_batch,
stride_out_seqlen,
stride_out_nheads,
stride_out_headdim,
stride_x_batch,
stride_x_seqlen,
stride_x_nheads,
stride_x_headdim,
# Meta-parameters
BLOCK_K: tl.constexpr,
IS_SEQLEN_OFFSETS_TENSOR: tl.constexpr,
IS_VARLEN: tl.constexpr,
INTERLEAVED: tl.constexpr,
CONJUGATE: tl.constexpr,
BLOCK_M: tl.constexpr,
):
pid_m = tl.program_id(axis=0)
pid_batch = tl.program_id(axis=1)
pid_head = tl.program_id(axis=2)
rotary_dim_half = rotary_dim // 2

if not IS_VARLEN:
X = X + pid_batch * stride_x_batch + pid_head * stride_x_nheads
OUT = OUT + pid_batch * stride_out_batch + pid_head * stride_out_nheads
else:
start_idx = tl.load(CU_SEQLENS + pid_batch)
seqlen = tl.load(CU_SEQLENS + pid_batch + 1) - start_idx
X = X + start_idx * stride_x_seqlen + pid_head * stride_x_nheads
OUT = OUT + start_idx * stride_out_seqlen + pid_head * stride_out_nheads

if pid_m * BLOCK_M >= seqlen:
return
rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
if not IS_SEQLEN_OFFSETS_TENSOR:
rm_cs = rm + SEQLEN_OFFSETS
else:
rm_cs = rm + tl.load(SEQLEN_OFFSETS + pid_batch)
rk = tl.arange(0, BLOCK_K)
rk_half = tl.arange(0, BLOCK_K // 2)

if not INTERLEAVED:
# Load the 1st and 2nd halves of X, do calculation, then store to 1st and 2nd halves of OUT
X = X + (rm[:, None] * stride_x_seqlen + rk_half[None, :] * stride_x_headdim)
COS = COS + (rm_cs[:, None] * rotary_dim_half + rk_half[None, :])
SIN = SIN + (rm_cs[:, None] * rotary_dim_half + rk_half[None, :])
cos = tl.load(
COS, mask=(rm_cs[:, None] < seqlen_ro) & (rk_half[None, :] < rotary_dim_half), other=1.0
).to(tl.float32)
sin = tl.load(
SIN, mask=(rm_cs[:, None] < seqlen_ro) & (rk_half[None, :] < rotary_dim_half), other=0.0
).to(tl.float32)
x0 = tl.load(
X, mask=(rm[:, None] < seqlen) & (rk_half[None, :] < rotary_dim_half), other=0.0
).to(tl.float32)
x1 = tl.load(
X + rotary_dim_half * stride_x_headdim,
mask=(rm[:, None] < seqlen) & (rk_half[None, :] < rotary_dim_half),
other=0.0,
).to(tl.float32)
if CONJUGATE:
sin = -sin
o0 = x0 * cos - x1 * sin
o1 = x0 * sin + x1 * cos
# write back result
OUT = OUT + (rm[:, None] * stride_out_seqlen + rk_half[None, :] * stride_out_headdim)
tl.store(OUT, o0, mask=(rm[:, None] < seqlen) & (rk_half[None, :] < rotary_dim_half))
tl.store(
OUT + rotary_dim_half * stride_out_headdim,
o1,
mask=(rm[:, None] < seqlen) & (rk_half[None, :] < rotary_dim_half),
)
else:
# We don't want to load X[0, 2, 4, ...] and X[1, 3, 5, ...] separately since both are slow.
# Instead, we load x0 = X[0, 1, 2, 3, ...] and x1 = X[1, 0, 3, 2, ...].
# Loading x0 will be fast but x1 will be slow.
# Then we load cos = COS[0, 0, 1, 1, ...] and sin = SIN[0, 0, 1, 1, ...].
# Then we do the calculation and use tl.where to pick put the right outputs for the even
# and for the odd indices.
rk_swap = rk + ((rk + 1) % 2) * 2 - 1 # 1, 0, 3, 2, 5, 4, ...
rk_repeat = tl.arange(0, BLOCK_K) // 2
X0 = X + (rm[:, None] * stride_x_seqlen + rk[None, :] * stride_x_headdim)
X1 = X + (rm[:, None] * stride_x_seqlen + rk_swap[None, :] * stride_x_headdim)
COS = COS + (rm_cs[:, None] * rotary_dim_half + rk_repeat[None, :])
SIN = SIN + (rm_cs[:, None] * rotary_dim_half + rk_repeat[None, :])
cos = tl.load(
COS,
mask=(rm_cs[:, None] < seqlen_ro) & (rk_repeat[None, :] < rotary_dim_half),
other=1.0,
).to(tl.float32)
sin = tl.load(
SIN,
mask=(rm_cs[:, None] < seqlen_ro) & (rk_repeat[None, :] < rotary_dim_half),
other=0.0,
).to(tl.float32)
x0 = tl.load(X0, mask=(rm[:, None] < seqlen) & (rk[None, :] < rotary_dim), other=0.0).to(
tl.float32
)
x1 = tl.load(
X1, mask=(rm[:, None] < seqlen) & (rk_swap[None, :] < rotary_dim), other=0.0
).to(tl.float32)
if CONJUGATE:
sin = -sin
x0_cos = x0 * cos
x1_sin = x1 * sin
out = tl.where(rk[None, :] % 2 == 0, x0_cos - x1_sin, x0_cos + x1_sin)
OUT = OUT + (rm[:, None] * stride_out_seqlen + rk[None, :] * stride_out_headdim)
tl.store(OUT, out, mask=(rm[:, None] < seqlen) & (rk[None, :] < rotary_dim))


def apply_rotary(
x: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
seqlen_offsets: Union[int, torch.Tensor] = 0,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
interleaved=False,
inplace=False,
conjugate=False,
) -> torch.Tensor:
"""
Arguments:
x: (batch, seqlen, nheads, headdim) if cu_seqlens is None
else (total_seqlen, nheads, headdim).
cos: (seqlen_ro, rotary_dim / 2)
sin: (seqlen_ro, rotary_dim / 2)
seqlen_offsets: integer or integer tensor of size (batch,)
cu_seqlens: (batch + 1,) or None
max_seqlen: int
Returns:
y: (batch, seqlen, nheads, headdim)
"""
is_varlen = cu_seqlens is not None
if not is_varlen:
batch, seqlen, nheads, headdim = x.shape
else:
assert max_seqlen is not None, "If cu_seqlens is passed in, then max_seqlen must be passed"
total_seqlen, nheads, headdim = x.shape
batch_p_1 = cu_seqlens.shape[0]
batch = batch_p_1 - 1
seqlen = max_seqlen
seqlen_ro, rotary_dim = cos.shape
assert sin.shape == cos.shape
rotary_dim *= 2
assert rotary_dim <= headdim, "rotary_dim must be <= headdim"
assert headdim <= 256, "Only support headdim <= 256"
assert seqlen_ro >= seqlen, "seqlen_ro must be >= seqlen"

assert (
cos.dtype == sin.dtype
), f"cos and sin must have the same dtype, got {cos.dtype} and {sin.dtype}"
assert (
x.dtype == cos.dtype
), f"Input and cos/sin must have the same dtype, got {x.dtype} and {cos.dtype}"

cos, sin = cos.contiguous(), sin.contiguous()
if isinstance(seqlen_offsets, torch.Tensor):
assert seqlen_offsets.shape == (batch,)
assert seqlen_offsets.dtype in [torch.int32, torch.int64]
seqlen_offsets = seqlen_offsets.contiguous()
else:
assert seqlen_offsets + seqlen <= seqlen_ro

output = torch.empty_like(x) if not inplace else x
if rotary_dim < headdim and not inplace:
output[..., rotary_dim:].copy_(x[..., rotary_dim:])

BLOCK_K = (
32
if rotary_dim <= 32
else (64 if rotary_dim <= 64 else (128 if rotary_dim <= 128 else 256))
)
grid = lambda META: (triton.cdiv(seqlen, META["BLOCK_M"]), batch, nheads) # noqa
BLOCK_M = 4 if interleaved else (8 if rotary_dim <= 64 else 4)

# Need this, otherwise Triton tries to launch from cuda:0 and we get
# ValueError: Pointer argument (at 0) cannot be accessed from Triton (cpu tensor?)
with torch.cuda.device(x.device.index):
rotary_kernel[grid](
output, # data ptrs
x,
cos,
sin,
cu_seqlens,
seqlen_offsets,
seqlen, # shapes
nheads,
rotary_dim,
seqlen_ro,
seqlen // 128, # key for triton cache (limit number of compilations)
output.stride(0) if not is_varlen else 0, # batch_strides if not varlen else 0
output.stride(-3), # seqlen_stride or total_seqlen_stride
output.stride(-2), # nheads_stride
output.stride(-1), # headdim_stride
x.stride(0) if not is_varlen else 0, # batch_strides if not varlen else 0
x.stride(-3), # seqlen stride or total_seqlen_stride
x.stride(-2), # nheads stride
x.stride(-1), # headdim stride
BLOCK_K,
isinstance(seqlen_offsets, torch.Tensor),
is_varlen,
interleaved,
conjugate,
BLOCK_M,
)
return output


class ApplyRotaryEmb(torch.autograd.Function):
@staticmethod
def forward(
ctx,
x,
cos,
sin,
interleaved=False,
inplace=False,
seqlen_offsets: Union[int, torch.Tensor] = 0,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
):
out = apply_rotary(
x,
cos,
sin,
seqlen_offsets=seqlen_offsets,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
interleaved=interleaved,
inplace=inplace,
)
if isinstance(seqlen_offsets, int):
# Can't save int with save_for_backward
ctx.save_for_backward(cos, sin, cu_seqlens)
ctx.seqlen_offsets = seqlen_offsets
else:
ctx.save_for_backward(cos, sin, cu_seqlens, seqlen_offsets)
ctx.seqlen_offsets = None
ctx.interleaved = interleaved
ctx.inplace = inplace
ctx.max_seqlen = max_seqlen
return out if not inplace else x


@staticmethod
def backward(ctx, do):
seqlen_offsets = ctx.seqlen_offsets
if seqlen_offsets is None:
cos, sin, cu_seqlens, seqlen_offsets = ctx.saved_tensors
else:
cos, sin, cu_seqlens = ctx.saved_tensors
# TD [2023-09-02]: For some reason Triton (2.0.0.post1) errors with
# "[CUDA]: invalid device context", and cloning makes it work. Idk why. Triton 2.1.0 works.
if not ctx.interleaved and not ctx.inplace:
do = do.clone()
dx = apply_rotary(
do,
cos,
sin,
seqlen_offsets=seqlen_offsets,
cu_seqlens=cu_seqlens,
max_seqlen=ctx.max_seqlen,
interleaved=ctx.interleaved,
inplace=ctx.inplace,
conjugate=True,
)
return dx, None, None, None, None, None, None, None


def apply_rotary_emb(
x,
cos,
sin,
interleaved=False,
inplace=False,
seqlen_offsets: Union[int, torch.Tensor] = 0,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
):
"""
Arguments:
x: (batch_size, seqlen, nheads, headdim) if cu_seqlens is None
else (total_seqlen, nheads, headdim)
cos, sin: (seqlen_rotary, rotary_dim / 2)
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
of 1st half and 2nd half (GPT-NeoX style).
inplace: if True, apply rotary embedding in-place.
seqlen_offsets: (batch_size,) or int. Each sequence in x is shifted by this amount.
Most commonly used in inference when we have KV cache.
cu_seqlens: (batch + 1,) or None
max_seqlen: int
Return:
out: (batch_size, seqlen, nheads, headdim) if cu_seqlens is None
else (total_seqlen, nheads, headdim)
rotary_dim must be <= headdim
Apply rotary embedding to the first rotary_dim of x.
"""
return ApplyRotaryEmb.apply(
x, cos, sin, interleaved, inplace, seqlen_offsets, cu_seqlens, max_seqlen
)
Loading

0 comments on commit c75cb7a

Please sign in to comment.