-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
efb8687
commit 8cb9716
Showing
1 changed file
with
166 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,166 @@ | ||
import re | ||
import torch | ||
from datasets import load_dataset, Dataset | ||
from transformers import AutoTokenizer, AutoModelForCausalLM | ||
from peft import LoraConfig | ||
from trl import GRPOConfig, GRPOTrainer | ||
|
||
# Load and prep dataset | ||
|
||
SYSTEM_PROMPT = """ | ||
Respond in the following format: | ||
<reasoning> | ||
... | ||
</reasoning> | ||
<answer> | ||
... | ||
</answer> | ||
""" | ||
|
||
XML_COT_FORMAT = """\ | ||
<reasoning> | ||
{reasoning} | ||
</reasoning> | ||
<answer> | ||
{answer} | ||
</answer> | ||
""" | ||
|
||
def extract_xml_answer(text: str) -> str: | ||
answer = text.split("<answer>")[-1] | ||
answer = answer.split("</answer>")[0] | ||
return answer.strip() | ||
|
||
def extract_hash_answer(text: str) -> str | None: | ||
if "####" not in text: | ||
return None | ||
return text.split("####")[1].strip().replace(",", "").replace("$", "") | ||
|
||
# uncomment middle messages for 1-shot prompting | ||
def get_gsm8k_questions(split = "train") -> Dataset: | ||
data = load_dataset('openai/gsm8k', 'main')[split] # type: ignore | ||
data = data.map(lambda x: { # type: ignore | ||
'prompt': [ | ||
{'role': 'system', 'content': SYSTEM_PROMPT}, | ||
#{'role': 'user', 'content': 'What is the largest single-digit prime number?'}, | ||
#{'role': 'assistant', 'content': XML_COT_FORMAT.format( | ||
# reasoning="9 is divisble by 3 and 8 is divisible by 2, but 7 is prime.", | ||
# answer="7" | ||
#)}, | ||
{'role': 'user', 'content': x['question']} | ||
], | ||
'answer': extract_hash_answer(x['answer']) | ||
}) # type: ignore | ||
return data # type: ignore | ||
|
||
dataset = get_gsm8k_questions() | ||
|
||
# Reward functions | ||
def correctness_reward_func(prompts, completions, answer, **kwargs) -> list[float]: | ||
responses = [completion[0]['content'] for completion in completions] | ||
q = prompts[0][-1]['content'] | ||
extracted_responses = [extract_xml_answer(r) for r in responses] | ||
print('-'*20, f"Question:\n{q}", f"\nAnswer:\n{answer[0]}", f"\nResponse:\n{responses[0]}", f"\nExtracted:\n{extracted_responses[0]}") | ||
return [2.0 if r == a else 0.0 for r, a in zip(extracted_responses, answer)] | ||
|
||
def int_reward_func(completions, **kwargs) -> list[float]: | ||
responses = [completion[0]['content'] for completion in completions] | ||
extracted_responses = [extract_xml_answer(r) for r in responses] | ||
return [0.5 if r.isdigit() else 0.0 for r in extracted_responses] | ||
|
||
def strict_format_reward_func(completions, **kwargs) -> list[float]: | ||
"""Reward function that checks if the completion has a specific format.""" | ||
pattern = r"^<reasoning>\n.*?\n</reasoning>\n<answer>\n.*?\n</answer>\n$" | ||
responses = [completion[0]["content"] for completion in completions] | ||
matches = [re.match(pattern, r, flags=re.DOTALL) for r in responses] | ||
return [0.5 if match else 0.0 for match in matches] | ||
|
||
def soft_format_reward_func(completions, **kwargs) -> list[float]: | ||
"""Reward function that checks if the completion has a specific format.""" | ||
pattern = r"<reasoning>.*?</reasoning>\s*<answer>.*?</answer>" | ||
responses = [completion[0]["content"] for completion in completions] | ||
matches = [re.match(pattern, r, flags=re.DOTALL) for r in responses] | ||
return [0.5 if match else 0.0 for match in matches] | ||
|
||
def count_xml(text) -> float: | ||
count = 0.0 | ||
if text.count("<reasoning>\n") == 1: | ||
count += 0.125 | ||
if text.count("\n</reasoning>\n") == 1: | ||
count += 0.125 | ||
if text.count("\n<answer>\n") == 1: | ||
count += 0.125 | ||
count -= len(text.split("\n</answer>\n")[-1])*0.001 | ||
if text.count("\n</answer>") == 1: | ||
count += 0.125 | ||
count -= (len(text.split("\n</answer>")[-1]) - 1)*0.001 | ||
return count | ||
|
||
def xmlcount_reward_func(completions, **kwargs) -> list[float]: | ||
contents = [completion[0]["content"] for completion in completions] | ||
return [count_xml(c) for c in contents] | ||
|
||
#model_name = "meta-llama/Llama-3.2-1B-Instruct" | ||
model_name = "Qwen/Qwen2.5-1.5B-Instruct" | ||
|
||
if "Llama" in model_name: | ||
output_dir = "outputs/Llama-1B-GRPO" | ||
run_name = "Llama-1B-GRPO-gsm8k" | ||
else: | ||
output_dir="outputs/Qwen-1.5B-GRPO" | ||
run_name="Qwen-1.5B-GRPO-gsm8k" | ||
|
||
training_args = GRPOConfig( | ||
output_dir=output_dir, | ||
run_name=run_name, | ||
learning_rate=5e-6, | ||
adam_beta1 = 0.9, | ||
adam_beta2 = 0.99, | ||
weight_decay = 0.1, | ||
warmup_ratio = 0.1, | ||
lr_scheduler_type='cosine', | ||
logging_steps=1, | ||
bf16=True, | ||
per_device_train_batch_size=1, | ||
gradient_accumulation_steps=4, | ||
num_generations=16, | ||
max_prompt_length=256, | ||
max_completion_length=786, | ||
num_train_epochs=1, | ||
save_steps=100, | ||
max_grad_norm=0.1, | ||
report_to="wandb", | ||
log_on_each_node=False, | ||
) | ||
peft_config = LoraConfig( | ||
r=16, | ||
lora_alpha=64, | ||
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "up_proj", "down_proj", "gate_proj"], | ||
task_type="CAUSAL_LM", | ||
lora_dropout=0.05, | ||
) | ||
model = AutoModelForCausalLM.from_pretrained( | ||
model_name, | ||
torch_dtype=torch.bfloat16, | ||
attn_implementation="flash_attention_2", | ||
device_map=None | ||
).to("cuda") | ||
|
||
tokenizer = AutoTokenizer.from_pretrained(model_name) | ||
tokenizer.pad_token = tokenizer.eos_token | ||
|
||
# use peft at your own risk; not working for me with multi-GPU training | ||
trainer = GRPOTrainer( | ||
model=model, | ||
processing_class=tokenizer, | ||
reward_funcs=[ | ||
xmlcount_reward_func, | ||
soft_format_reward_func, | ||
strict_format_reward_func, | ||
int_reward_func, | ||
correctness_reward_func], | ||
args=training_args, | ||
train_dataset=dataset, | ||
#peft_config=peft_config | ||
) | ||
trainer.train() |