Skip to content

Commit

Permalink
feat: Add notebooks for Phi3 cookbook
Browse files Browse the repository at this point in the history
  • Loading branch information
YeonwooSung committed Jul 27, 2024
1 parent 82b2367 commit 38ff2c1
Show file tree
Hide file tree
Showing 39 changed files with 54,226 additions and 0 deletions.
74 changes: 74 additions & 0 deletions LLMs/phi3/Finetuning/FineTrainingScript.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,74 @@
# This code is for fine-tuning Phi-3 Models.
# Note thi requires 7.4 GB of GPU RAM for the process.
# Model available at https://huggingface.co/collections/microsoft/phi-3-6626e15e9585a200d2d761e3
# Model Names
# microsoft/Phi-3-mini-4k-instruct
# microsoft/Phi-3-mini-128k-instruct
# microsoft/Phi-3-small-8k-instruct
# microsoft/Phi-3-small-128k-instruct
# microsoft/Phi-3-medium-4k-instruct
# microsoft/Phi-3-medium-128k-instruct
# microsoft/Phi-3-vision-128k-instruct
# microsoft/Phi-3-mini-4k-instruct-onnx
# microsoft/Phi-3-mini-4k-instruct-onnx-web
# microsoft/Phi-3-mini-128k-instruct-onnx
# microsoft/Phi-3-small-8k-instruct-onnx-cuda
# microsoft/Phi-3-small-128k-instruct-onnx-cuda
# microsoft/Phi-3-medium-4k-instruct-onnx-cpu
# microsoft/Phi-3-medium-4k-instruct-onnx-cuda
# microsoft/Phi-3-medium-4k-instruct-onnx-directml
# microsoft/Phi-3-medium-128k-instruct-onnx-cpu
# microsoft/Phi-3-medium-128k-instruct-onnx-cuda
# microsoft/Phi-3-medium-128k-instruct-onnx-directml
# microsoft/Phi-3-mini-4k-instruct-gguf

# Load the pre-trained model and tokenizer
model = AutoModelForCausalLM.from_pretrained('Model_Name', torch_dtype=torch.float16)
tokenizer = AutoTokenizer.from_pretrained('Mode_Name')

# Load the dataset for fine-tuning
dataset = load_dataset(DATASET_NAME, split="train")

# Define the formatting function for the prompts
def formatting_prompts_func(examples):
convos = examples["conversations"]
texts = []
mapper = {"system": "system\n", "human": "\nuser\n", "gpt": "\nassistant\n"}
end_mapper = {"system": "", "human": "", "gpt": ""}
for convo in convos:
text = "".join(f"{mapper[(turn := x['from'])]} {x['value']}\n{end_mapper[turn]}" for x in convo)
texts.append(f"{text}{tokenizer.eos_token}")
return {"text": texts}

# Apply the formatting function to the dataset
dataset = dataset.map(formatting_prompts_func, batched=True)

# Define the training arguments
args = TrainingArguments(
evaluation_strategy="steps",
per_device_train_batch_size=7,
gradient_accumulation_steps=4,
gradient_checkpointing=True,
learning_rate=1e-4,
fp16=True,
max_steps=-1,
num_train_epochs=3,
save_strategy="epoch",
logging_steps=10,
output_dir=NEW_MODEL_NAME,
optim="paged_adamw_32bit",
lr_scheduler_type="linear"
)

# Create the trainer
trainer = SFTTrainer(
model=model,
args=args,
train_dataset=dataset,
dataset_text_field="text",
max_seq_length=128,
formatting_func=formatting_prompts_func
)

# Start the training process
trainer.train()
1 change: 1 addition & 0 deletions LLMs/phi3/Finetuning/Phi-3-finetune-lora-python.ipynb

Large diffs are not rendered by default.

1 change: 1 addition & 0 deletions LLMs/phi3/Finetuning/Phi-3-finetune-qlora-python.ipynb

Large diffs are not rendered by default.

278 changes: 278 additions & 0 deletions LLMs/phi3/Finetuning/Phi-3-vision-Trainingscript.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,278 @@
# Import necessary libraries
# Code orginally from https://wandb.ai/byyoung3/mlnews3/reports/How-to-fine-tune-Phi-3-vision-on-a-custom-dataset--Vmlldzo4MTEzMTg3
# Credits to: Brett Young https://github.com/bdytx5/

import os
import torch
from torch.utils.data import Dataset, DataLoader, random_split
from transformers import AutoModelForCausalLM, AutoProcessor
from torchvision import transforms
from PIL import Image
import pandas as pd
import random
import wandb
import numpy as np
from torchvision.transforms.functional import resize, to_pil_image

import torch.optim as optim
import torch.nn.functional as F

torch.manual_seed(3)

# Initialize Weights & Biases for experiment tracking
run = wandb.init(project="burberry-product-phi3", entity="byyoung3")

# Custom Dataset class for Burberry Product Prices and Images
class BurberryProductDataset(Dataset):
def __init__(self, dataframe, tokenizer, max_length, image_size):
self.dataframe = dataframe
self.tokenizer = tokenizer
self.tokenizer.padding_side = 'left' # Set padding side to left
self.max_length = max_length

def __len__(self):
return len(self.dataframe)

def __getitem__(self, idx):
# Get the row at the given index
row = self.dataframe.iloc[idx]

# Create the text input for the model
text = f"<|user|>\n<|image_1|>What is shown in this image?<|end|><|assistant|>\nProduct: {row['title']}, Category: {row['category3_code']}, Full Price: {row['full_price']}<|end|>"

# Get the image path from the row
image_path = row['local_image_path']

# Tokenize the text input
encodings = self.tokenizer(text, truncation=True, padding='max_length', max_length=self.max_length)

try:
# Load and transform the image
image = Image.open(image_path).convert("RGB")
image = self.image_transform_function(image)
except (FileNotFoundError, IOError):
# Skip the sample if the image is not found
return None

# Add the image and price information to the encodings dictionary
encodings['pixel_values'] = image
encodings['price'] = row['full_price']

return {key: torch.tensor(val) for key, val in encodings.items()}

def image_transform_function(self, image):
# Convert the image to a numpy array
image = np.array(image)
return image

# Load dataset from disk
dataset_path = './data/burberry_dataset/burberry_dataset.csv'
df = pd.read_csv(dataset_path)

# Initialize processor and tokenizer for the pre-trained model
model_id = "microsoft/Phi-3-vision-128k-instruct"
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
tokenizer = processor.tokenizer

# Split dataset into training and validation sets
train_size = int(0.9 * len(df))
val_size = len(df) - train_size
train_indices, val_indices = random_split(range(len(df)), [train_size, val_size])
train_indices = train_indices.indices
val_indices = val_indices.indices
train_df = df.iloc[train_indices]
val_df = df.iloc[val_indices]

# Create dataset and dataloader for training set
train_dataset = BurberryProductDataset(train_df, tokenizer, max_length=512, image_size=128)
train_loader = DataLoader(train_dataset, batch_size=1, shuffle=True)

# Create dataset and dataloader for validation set
val_dataset = BurberryProductDataset(val_df, tokenizer, max_length=512, image_size=128)
val_loader = DataLoader(val_dataset, batch_size=1, shuffle=False)

# Initialize the pre-trained model
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="cuda", trust_remote_code=True, torch_dtype="auto")

# Set the device to GPU if available, otherwise use CPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

# Initialize the optimizer
optimizer = optim.AdamW(model.parameters(), lr=5e-5)

# Training loop
num_epochs = 1
eval_interval = 150 # Evaluate every 'eval_interval' steps
loss_scaling_factor = 1000.0 # Variable to scale the loss by a certain amount
save_dir = './saved_models'
step = 0
accumulation_steps = 64 # Accumulate gradients over this many steps

# Create a directory to save the best model
if not os.path.exists(save_dir):
os.makedirs(save_dir)

best_val_loss = float('inf')
best_model_path = None

# Select 10 random images from the validation set for logging
num_log_samples = 10
log_indices = random.sample(range(len(val_dataset)), num_log_samples)

# Function to extract the predicted price from model predictions
def extract_price_from_predictions(predictions, tokenizer):
# Assuming the price is at the end of the text and separated by a space
predicted_text = tokenizer.decode(predictions[0], skip_special_tokens=True)
try:
predicted_price = float(predicted_text.split()[-1].replace(',', ''))
except ValueError:
predicted_price = 0.0
return predicted_price

# Function to evaluate the model on the validation set
def evaluate(model, val_loader, device, tokenizer, step, log_indices, max_samples=None):
model.eval()
total_loss = 0
total_price_error = 0
log_images = []
log_gt_texts = []
log_pred_texts = []
table = wandb.Table(columns=["Image", "Ground Truth Text", "Predicted Text"])

with torch.no_grad():
for i, batch in enumerate(val_loader):
if max_samples and i >= max_samples:
break

if batch is None: # Skip if the batch is None
continue

input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
pixel_values = batch['pixel_values'].to(device)
labels = input_ids.clone().detach()
actual_price = batch['price'].item()

outputs = model(
input_ids=input_ids,
attention_mask=attention_mask,
pixel_values=pixel_values,
labels=labels
)
loss = outputs.loss
total_loss += loss.item()

# Calculate price error
predictions = torch.argmax(outputs.logits, dim=-1)
predicted_price = extract_price_from_predictions(predictions, tokenizer)
price_error = abs(predicted_price - actual_price)
total_price_error += price_error

# Log images, ground truth texts, and predicted texts
if i in log_indices:
log_images.append(pixel_values.cpu().squeeze().numpy())
log_gt_texts.append(tokenizer.decode(labels[0], skip_special_tokens=True))
log_pred_texts.append(tokenizer.decode(predictions[0], skip_special_tokens=True))

# Convert image to PIL format
pil_img = to_pil_image(resize(torch.from_numpy(log_images[-1]).permute(2, 0, 1), (336, 336))).convert("RGB")

# Add data to the table
table.add_data(wandb.Image(pil_img), log_gt_texts[-1], log_pred_texts[-1])

# Log the table incrementally
wandb.log({"Evaluation Results step {}".format(step): table, "Step": step})

avg_loss = total_loss / (i + 1) # i+1 to account for the loop index
avg_price_error = total_price_error / (i + 1)
model.train()

return avg_loss, avg_price_error

# Set the model to training mode
model.train()

# Training loop for the specified number of epochs
for epoch in range(num_epochs):
total_train_loss = 0
total_train_price_error = 0
batch_count = 0

for batch in train_loader:
step += 1

if batch is None: # Skip if the batch is None
continue

input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
pixel_values = batch['pixel_values'].to(device)
labels = input_ids.clone().detach()
actual_price = batch['price'].float().to(device)

outputs = model(
input_ids=input_ids,
attention_mask=attention_mask,
pixel_values=pixel_values,
labels=labels
)
loss = outputs.loss
total_loss = loss
predictions = torch.argmax(outputs.logits, dim=-1)
predicted_price = extract_price_from_predictions(predictions, tokenizer)

total_loss.backward()

if (step % accumulation_steps) == 0:
for param in model.parameters():
if param.grad is not None:
param.grad /= accumulation_steps
optimizer.step()
optimizer.zero_grad()

total_train_loss += total_loss.item()
total_train_price_error += abs(predicted_price - actual_price.item())
batch_count += 1

# Log batch loss to Weights & Biases
wandb.log({"Batch Loss": total_loss.item(), "Step": step})

print(f"Epoch: {epoch}, Step: {step}, Batch Loss: {total_loss.item()}")

if step % eval_interval == 0:
val_loss, val_price_error = evaluate(model, val_loader, device, tokenizer=tokenizer, log_indices=log_indices, step=step )
wandb.log({
"Validation Loss": val_loss,
"Validation Price Error (Average)": val_price_error,
"Step": step
})
print(f"Step: {step}, Validation Loss: {val_loss}, Validation Price Error (Normalized): {val_price_error}")

# Save the best model based on validation loss
if val_loss < best_val_loss:
best_val_loss = val_loss
best_model_path = os.path.join(save_dir, f"best_model")
model.save_pretrained(best_model_path, safe_serialization=False)
tokenizer.save_pretrained(best_model_path)

avg_train_loss = total_train_loss / batch_count
avg_train_price_error = total_train_price_error / batch_count
wandb.log({
"Epoch": epoch,
"Average Training Loss": avg_train_loss,
"Average Training Price Error": avg_train_price_error
})

print(f"Epoch: {epoch}, Average Training Loss: {avg_train_loss}, Average Training Price Error: {avg_train_price_error}")

# Log the best model to Weights & Biases
if best_model_path:
run.log_model(
path=best_model_path,
name="phi3-v-burberry",
aliases=["best"],
)

# Finish the Weights & Biases run
wandb.finish()
Loading

0 comments on commit 38ff2c1

Please sign in to comment.