Authors: Baoyang Zhang, Zhen Lu, Yaomin Zhao, Yue Yang
Paper: arXiv:2507.21890
QKoopman is an experimental research project exploring the potential of quantum-accelerated nonlinear dynamics simulation through a novel data-driven quantum Koopman method that combines deep learning for global linearization with quantum algorithms for unitary evolution.
To set up the QKoopman environment:
# Create and activate a conda environment
conda create -n qk python=3.10.12
conda activate qk
# Install required dependencies
pip install -r requirements.txtThis repository contains implementations for three fundamental nonlinear dynamics cases:
-
Reaction-diffusion system (
gray/) -
2D turbulence (
kol/) -
Shear flow (
shear/)
Post-processing tools are available in kpo/.
We utilize DeepSpeed for distributed data-parallel training.
The training process can be launched using the following shell script:
NUM_GPUS=$(nvidia-smi -L 2>/dev/null | wc -l)
deepspeed --num_gpus ${NUM_GPUS} \
gd_h4.py \
--deepspeed \
--deepspeed_config ds_config.json \
> run.log 2>&1To evaluate the models and reproduce results from our paper:
-
Download the dataset
The data for this project is hosted on Hugging Face Datasets:
-
Run visualization notebook
Execute our Jupyter notebook for generating figures:jupyter notebook ./kpo/draw.ipynb
If you use our code, please cite:
@misc{Zhang2025quantumKoopman,
title={Data-driven quantum {Koopman} method for simulating nonlinear dynamics},
author={Zhang, Baoyang and Lu, Zhen and Zhao, Yaomin and Yang, Yue},
year={2025},
eprint={2507.21890},
archivePrefix={arXiv},
primaryClass={quant-ph},
url={https://arxiv.org/abs/2507.21890},
}