Small package to perform not-yet-quantum reservoir computing as in Ref. 1 in a flexible way. See the example on MNIST bellow.
using Distributed
# Add N-1 processes in addition to the master one
N = 4
nprocs()<N && addprocs(N-nprocs())
@everywhere using ParallelDataTransfer
@everywhere using QuantumReservoirComputing, LightGraphs, DifferentialEquations, Statistics
using Flux, Flux.Data.MNIST, Statistics
using Flux: onehotbatch, onecold, crossentropy, throttle
using Base.Iterators: repeated
using ProgressMeter
# Set sizes of the training and test sets
M_train = 5000
M_test = 1000
# Retrieve MNIST dataset
imgs = MNIST.images()
imgs_train = [float.(img) for img in imgs[1:M_train]]
imgs_test = [float.(img) for img in imgs[M_train+1:M_train+M_test]]
# Send data from master process to all workers
@passobj 1 workers() imgs_train
@passobj 1 workers() imgs_test
# Set the input size of the reservoir to the height of MNIST images
input_size = size(first(imgs),2)
@passobj 1 workers() input_size
# Retrieve labels
labels_train = MNIST.labels()[1:M_train]
labels_test = MNIST.labels()[M_train+1:M_train+M_test]
# One-hot-encode the labels
Y_train = onehotbatch(labels_train, 0:9)
Y_test = onehotbatch(labels_test , 0:9)
# Each MNIST image will be encoded into a a set of `input_size` timeseries of
# temporal length tf-ti
@everywhere ti, tf = 0.0, 5.0
# `f1` transforms matrices into timeseries
@everywhere f1(mat) = InputSignal(mat, ti, tf)
# `cgle_layer` defines a reservoir that accepts timeseries of `InputSignal` type
# and outputs the value of the complex fields of a complex Ginzburg-Landau
# equation at time tf.
@everywhere γ, Γ, g = 1e-4, 5., 2. # Reservoir's parameters
@everywhere D = 0.0 # No noise is here considered
@everywhere G = grid([10,10]) # Define the system geometry to be a 2D lattice
@everywhere cgle_layer = GLLayer(ti,tf,input_size,γ,Γ,g,G,D)
# `f2` transforms field values into populations
@everywhere f2(sol) = mean(abs2.(sol), dims=2)[:,1]
println("Computing populations:")
# Compute populations of the training set
pops_train = @time @showprogress "Training set: " pmap(imgs_train) do img
f2(cgle_layer(f1(img)))
end
X_train = reduce(hcat, pops_train)
# Compute populations of the test set
pops_test = @time @showprogress "Test set: " pmap(imgs_test) do img
f2(cgle_layer(f1(img)))
end
X_test = reduce(hcat, pops_test)
# Define a simple model classifying inputs from the reservoir populations
m = Chain(Dense(nv(cgle_layer.G), 10),softmax)
# Define the loss function
loss(x,y) = crossentropy(m(x),y)
# Choose an optimizer
opt = ADAM(0.2)
# Iterate over 4000 epochs (this is multithreaded internally by Flux)
println("Learning:")
@time for it=1:4000
pars = params(m)
L, back = Tracker.forward(()->loss(X_train,Y_train), pars)
grads = back(1)
for p in pars
Tracker.update!(opt, p, grads[p])
end
if mod(it,200)==0
println(L, "\t,\t", count(onecold(m(X_train)) .== onecold(Y_train)) / length(imgs_train), "\t,\t", count(onecold(m(X_test)) .== onecold(Y_test)) / length(imgs_test))
end
end
Performing the computation of the reservoir's outputs on 4 processes and the optimization on 6 threads, one gets the following (upon second time execution, to avoid timing the compiling time)
Computing populations:
Training set :100%|███████████████████████████████████| Time: 0:00:39
39.149486 seconds (1.38 M allocations: 92.152 MiB, 0.08% gc time)
Test set :100%|███████████████████████████████████████| Time: 0:00:07
7.961126 seconds (417.24 k allocations: 25.769 MiB, 0.11% gc time)
Learning:
1.2234291f0 (tracked) , 0.6852 , 0.654
0.94211835f0 (tracked) , 0.7502 , 0.724
0.80892193f0 (tracked) , 0.782 , 0.768
0.7277918f0 (tracked) , 0.801 , 0.794
0.67145145f0 (tracked) , 0.8152 , 0.809
0.629144f0 (tracked) , 0.8284 , 0.815
0.59567076f0 (tracked) , 0.837 , 0.826
0.56818193f0 (tracked) , 0.8444 , 0.834
0.5449687f0 (tracked) , 0.8488 , 0.84
0.5249333f0 (tracked) , 0.8552 , 0.843
0.50748515f0 (tracked) , 0.8604 , 0.85
0.49216288f0 (tracked) , 0.8642 , 0.853
0.47863045f0 (tracked) , 0.8676 , 0.857
0.4665826f0 (tracked) , 0.8702 , 0.858
0.45567635f0 (tracked) , 0.875 , 0.86
0.44582537f0 (tracked) , 0.8794 , 0.862
0.43687144f0 (tracked) , 0.8824 , 0.864
0.4286812f0 (tracked) , 0.8838 , 0.866
0.42116913f0 (tracked) , 0.8846 , 0.868
0.41418228f0 (tracked) , 0.8866 , 0.869
37.634682 seconds (2.85 M allocations: 25.643 GiB, 11.53% gc time)
i.e. roughly 1'30" of execution time on one tenth of the MNIST dataset.
One can then build the full classifier by function composition as:
reservoir = f2 ∘ cgle_layer ∘ f1
classifier = (x->x-1) ∘ onecold ∘ m ∘ reservoir
##
i = rand(1:length(imgs_test)) # = 996
labels_test[i] # = 7
classifier(imgs_test[i]) # = 7
[1] A. Opala, S. Ghosh, T. C.H. Liew, and M. Matuszewski, Neuromorphic Computing in Ginzburg-Landau Polariton-Lattice Systems, Phys. Rev. Applied 11, 064029 (2019) ↩