|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# M1L7 Data Challenge: Data Manipulation \n", |
| 8 | + "\n", |
| 9 | + " We'll continue to work with UFO sighting data.\n", |
| 10 | + "\n", |
| 11 | + "### **Dataset:** [UFO Sightings](https://www.kaggle.com/datasets/jonwright13/ufo-sightings-around-the-world-better?resource=download) -- This is also in your data folder \n", |
| 12 | + "\n", |
| 13 | + "### **Objectives:**\n", |
| 14 | + "\n", |
| 15 | + "- Use string methods to manipulate data \n", |
| 16 | + "- Filter Data \n", |
| 17 | + "- Work more with dates in Python\n", |
| 18 | + "\n", |
| 19 | + "\n", |
| 20 | + "\n", |
| 21 | + "**Let's get started!**" |
| 22 | + ] |
| 23 | + }, |
| 24 | + { |
| 25 | + "cell_type": "markdown", |
| 26 | + "metadata": {}, |
| 27 | + "source": [ |
| 28 | + "### Step 1: Import Pandas & Numpy" |
| 29 | + ] |
| 30 | + }, |
| 31 | + { |
| 32 | + "cell_type": "code", |
| 33 | + "execution_count": null, |
| 34 | + "metadata": {}, |
| 35 | + "outputs": [], |
| 36 | + "source": [ |
| 37 | + "# Import Pandas \n", |
| 38 | + "None" |
| 39 | + ] |
| 40 | + }, |
| 41 | + { |
| 42 | + "cell_type": "markdown", |
| 43 | + "metadata": {}, |
| 44 | + "source": [ |
| 45 | + "### Step 2: Load the dataset (csv file stored in the data folder) into a Pandas DataFrame called `ufo`\n", |
| 46 | + "\n", |
| 47 | + "- The file is callled `ufo-sightings.csv`\n" |
| 48 | + ] |
| 49 | + }, |
| 50 | + { |
| 51 | + "cell_type": "code", |
| 52 | + "execution_count": null, |
| 53 | + "metadata": {}, |
| 54 | + "outputs": [], |
| 55 | + "source": [ |
| 56 | + "ufo = None\n" |
| 57 | + ] |
| 58 | + }, |
| 59 | + { |
| 60 | + "cell_type": "markdown", |
| 61 | + "metadata": {}, |
| 62 | + "source": [ |
| 63 | + "### Step 3: Explore the Data\n", |
| 64 | + "\n", |
| 65 | + "Use any method(s) of your choice to look at the data and explore it \n" |
| 66 | + ] |
| 67 | + }, |
| 68 | + { |
| 69 | + "cell_type": "code", |
| 70 | + "execution_count": null, |
| 71 | + "metadata": {}, |
| 72 | + "outputs": [], |
| 73 | + "source": [ |
| 74 | + "None" |
| 75 | + ] |
| 76 | + }, |
| 77 | + { |
| 78 | + "cell_type": "markdown", |
| 79 | + "metadata": {}, |
| 80 | + "source": [ |
| 81 | + "### Step 4: Clean the UFO_shape column \n", |
| 82 | + "- Make the column all uppercase \n", |
| 83 | + "- Strip off any leading and trailing spaces \n", |
| 84 | + "\n", |
| 85 | + "Even if there are no actual spaces; it is still good practice to trim off spaces even if you can't see space with the naked eye\n", |
| 86 | + "\n", |
| 87 | + "Hint: You will use both `str.upper()` and `str.strip()` -- you can do it in one step or two separate steps " |
| 88 | + ] |
| 89 | + }, |
| 90 | + { |
| 91 | + "cell_type": "code", |
| 92 | + "execution_count": null, |
| 93 | + "metadata": {}, |
| 94 | + "outputs": [], |
| 95 | + "source": [ |
| 96 | + "None" |
| 97 | + ] |
| 98 | + }, |
| 99 | + { |
| 100 | + "cell_type": "markdown", |
| 101 | + "metadata": {}, |
| 102 | + "source": [ |
| 103 | + "### Step 5: Use `pd.crosstab` to sum the number of shapes seen by season\n", |
| 104 | + "\n", |
| 105 | + "- Add a comment of a main takeaway from the output " |
| 106 | + ] |
| 107 | + }, |
| 108 | + { |
| 109 | + "cell_type": "code", |
| 110 | + "execution_count": null, |
| 111 | + "metadata": {}, |
| 112 | + "outputs": [], |
| 113 | + "source": [ |
| 114 | + "None\n", |
| 115 | + "#Add comment here: " |
| 116 | + ] |
| 117 | + }, |
| 118 | + { |
| 119 | + "cell_type": "code", |
| 120 | + "execution_count": null, |
| 121 | + "metadata": {}, |
| 122 | + "outputs": [], |
| 123 | + "source": [ |
| 124 | + "# Run this cell without changes before moving on to step 6!\n", |
| 125 | + "\n", |
| 126 | + "ufo['Date_time'] = pd.to_datetime(ufo['Date_time'], format=\"%Y-%m-%d %H:%M:%S\")" |
| 127 | + ] |
| 128 | + }, |
| 129 | + { |
| 130 | + "cell_type": "markdown", |
| 131 | + "metadata": {}, |
| 132 | + "source": [ |
| 133 | + "### Step 6: Filter the data where the region is equal to `New York`" |
| 134 | + ] |
| 135 | + }, |
| 136 | + { |
| 137 | + "cell_type": "code", |
| 138 | + "execution_count": null, |
| 139 | + "metadata": {}, |
| 140 | + "outputs": [], |
| 141 | + "source": [ |
| 142 | + "None" |
| 143 | + ] |
| 144 | + }, |
| 145 | + { |
| 146 | + "cell_type": "markdown", |
| 147 | + "metadata": {}, |
| 148 | + "source": [ |
| 149 | + "### Step 7: Get the most recent `Date_time` that a UFO was sighted in New York \n", |
| 150 | + "\n", |
| 151 | + "Hint: Make sure you saved your filtered data from Step 6 to a new dataframe object aka varaible. You can use `.max()` right after a column name to get the max of that column\n", |
| 152 | + "\n", |
| 153 | + "You are using the `Date_time` column for this question" |
| 154 | + ] |
| 155 | + }, |
| 156 | + { |
| 157 | + "cell_type": "code", |
| 158 | + "execution_count": null, |
| 159 | + "metadata": {}, |
| 160 | + "outputs": [], |
| 161 | + "source": [ |
| 162 | + "None" |
| 163 | + ] |
| 164 | + }, |
| 165 | + { |
| 166 | + "cell_type": "markdown", |
| 167 | + "metadata": {}, |
| 168 | + "source": [ |
| 169 | + "## Above and Beyond (AAB) -- OPTIONAL\n", |
| 170 | + "\n", |
| 171 | + "### Question 1: How many days have passed between the first UFO sighting in NY and the most recent sighting in NY based on this data?" |
| 172 | + ] |
| 173 | + }, |
| 174 | + { |
| 175 | + "cell_type": "code", |
| 176 | + "execution_count": null, |
| 177 | + "metadata": {}, |
| 178 | + "outputs": [], |
| 179 | + "source": [ |
| 180 | + "None" |
| 181 | + ] |
| 182 | + }, |
| 183 | + { |
| 184 | + "cell_type": "markdown", |
| 185 | + "metadata": {}, |
| 186 | + "source": [ |
| 187 | + "### Question 2: Filter the data where UFO_shape is `UNKNOWN` and the Region is `New York` " |
| 188 | + ] |
| 189 | + }, |
| 190 | + { |
| 191 | + "cell_type": "code", |
| 192 | + "execution_count": null, |
| 193 | + "metadata": {}, |
| 194 | + "outputs": [], |
| 195 | + "source": [ |
| 196 | + "None" |
| 197 | + ] |
| 198 | + } |
| 199 | + ], |
| 200 | + "metadata": { |
| 201 | + "kernelspec": { |
| 202 | + "display_name": "Python (learn-env)", |
| 203 | + "language": "python", |
| 204 | + "name": "learn-env" |
| 205 | + }, |
| 206 | + "language_info": { |
| 207 | + "codemirror_mode": { |
| 208 | + "name": "ipython", |
| 209 | + "version": 3 |
| 210 | + }, |
| 211 | + "file_extension": ".py", |
| 212 | + "mimetype": "text/x-python", |
| 213 | + "name": "python", |
| 214 | + "nbconvert_exporter": "python", |
| 215 | + "pygments_lexer": "ipython3", |
| 216 | + "version": "3.12.4" |
| 217 | + } |
| 218 | + }, |
| 219 | + "nbformat": 4, |
| 220 | + "nbformat_minor": 2 |
| 221 | +} |
0 commit comments