Skip to content

Commit 64313e6

Browse files
authored
Upload M1L7 Code Along
1 parent f84fc69 commit 64313e6

File tree

1 file changed

+161
-0
lines changed

1 file changed

+161
-0
lines changed
Lines changed: 161 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,161 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "markdown",
5+
"metadata": {},
6+
"source": [
7+
"# M1L7 Data Types, Dates, Strings \n",
8+
"\n",
9+
" We'll be working with UFO sighting data.\n",
10+
"\n",
11+
"### **Dataset:** [UFO Sightings](https://www.kaggle.com/datasets/jonwright13/ufo-sightings-around-the-world-better?resource=download) -- This is also in your data folder \n",
12+
"\n",
13+
"### **Objectives:**\n",
14+
"\n",
15+
"- Change an object to a datetime object \n",
16+
"- Use string methods to manipulate data \n"
17+
]
18+
},
19+
{
20+
"cell_type": "markdown",
21+
"metadata": {},
22+
"source": [
23+
"### Step 1: Import pandas and numpy "
24+
]
25+
},
26+
{
27+
"cell_type": "code",
28+
"execution_count": null,
29+
"metadata": {},
30+
"outputs": [],
31+
"source": [
32+
"#Import packages \n",
33+
"\n",
34+
"None"
35+
]
36+
},
37+
{
38+
"cell_type": "markdown",
39+
"metadata": {},
40+
"source": [
41+
"### Step 2: Load in the data and save it as `ufo`\n",
42+
"\n",
43+
"- The dataset is named `ufo-sightings.csv`"
44+
]
45+
},
46+
{
47+
"cell_type": "code",
48+
"execution_count": null,
49+
"metadata": {},
50+
"outputs": [],
51+
"source": [
52+
"ufo = None"
53+
]
54+
},
55+
{
56+
"cell_type": "markdown",
57+
"metadata": {},
58+
"source": [
59+
"### Step 3: Check column data types and the head of the data -- does the data/types make sense?"
60+
]
61+
},
62+
{
63+
"cell_type": "code",
64+
"execution_count": null,
65+
"metadata": {},
66+
"outputs": [],
67+
"source": [
68+
"None"
69+
]
70+
},
71+
{
72+
"cell_type": "markdown",
73+
"metadata": {},
74+
"source": [
75+
"### Step 4: Convert the `Date` column to datetime \n",
76+
"\n",
77+
"- Even though we have columns for year, month, and hour; we still want to change Date_time to a datetime object \n",
78+
"- Dates can come in many formats so we will use this format: '%Y-%m-%d %H:%M:%S'"
79+
]
80+
},
81+
{
82+
"cell_type": "code",
83+
"execution_count": null,
84+
"metadata": {},
85+
"outputs": [],
86+
"source": [
87+
"ufo['Date_time'] = None"
88+
]
89+
},
90+
{
91+
"cell_type": "code",
92+
"execution_count": null,
93+
"metadata": {},
94+
"outputs": [],
95+
"source": [
96+
"#Run this to see if the update worked \n",
97+
"ufo.info()"
98+
]
99+
},
100+
{
101+
"cell_type": "markdown",
102+
"metadata": {},
103+
"source": [
104+
"### Step 5: Make the `Description` column all lowercase \n",
105+
"\n",
106+
"- Think about why would we want text all lowercase \n",
107+
"\n",
108+
"**Instructor Notes**\n",
109+
"Feel free to talk about text analytics or LLMs or a simple case like states being different cases and you want to do aggregations"
110+
]
111+
},
112+
{
113+
"cell_type": "code",
114+
"execution_count": null,
115+
"metadata": {},
116+
"outputs": [],
117+
"source": [
118+
"ufo['Description'] = None\n",
119+
"print(ufo['Description'])"
120+
]
121+
},
122+
{
123+
"cell_type": "markdown",
124+
"metadata": {},
125+
"source": [
126+
"### Step 6: Replace spaces with underscores in the `Encounter_Duration` column\n"
127+
]
128+
},
129+
{
130+
"cell_type": "code",
131+
"execution_count": null,
132+
"metadata": {},
133+
"outputs": [],
134+
"source": [
135+
"ufo['Encounter_Duration'] = None\n",
136+
"print(ufo['Encounter_Duration'])"
137+
]
138+
}
139+
],
140+
"metadata": {
141+
"kernelspec": {
142+
"display_name": "Python (learn-env)",
143+
"language": "python",
144+
"name": "learn-env"
145+
},
146+
"language_info": {
147+
"codemirror_mode": {
148+
"name": "ipython",
149+
"version": 3
150+
},
151+
"file_extension": ".py",
152+
"mimetype": "text/x-python",
153+
"name": "python",
154+
"nbconvert_exporter": "python",
155+
"pygments_lexer": "ipython3",
156+
"version": "3.12.4"
157+
}
158+
},
159+
"nbformat": 4,
160+
"nbformat_minor": 2
161+
}

0 commit comments

Comments
 (0)