YOLOv5 in DOTA_OBB dataset with CSL_label.(Oriented Object Detection)
-
Datasets
: DOTA -
Datasets
: [Electrical-safety]-Not public yet
-
Pretrained Checkpoint or Demo Files
:train,detect_and_evaluate_demo_files
: | Baidu Drive(6666). | Google Drive |yolov5x.pt
: | Baidu Drive(6666). | Google Drive |yolov5l.pt
: | Baidu Drive(6666). | Google Drive |yolov5m.pt
: | Baidu Drive(6666). | Google Drive |yolov5s.pt
: | Baidu Drive(6666). | Google Drive |
-
The latest YOLOV5 model weights
: (https://github.com/ultralytics/yolov5).
-
train.py
. Train. -
detect.py
. Detect and visualize the detection result. Get the detection result txt. -
evaluation.py
. Merge the detection result and visualize it. Finally evaluate the detector
1.
Python 3.8 with all requirements.txt dependencies installed, including torch==1.6, opencv-python==4.1.2.30, To install run:
$ pip install -r requirements.txt
2.
Install swig
$ cd \.....\yolov5_DOTA_OBB\utils
$ sudo apt-get install swig
3.
Create the c++ extension for python
$ swig -c++ -python polyiou.i
$ python setup.py build_ext --inplace
1.
'Get Dataset'
-
Split the DOTA_OBB image and labels. Trans DOTA format to YOLO longside format.
-
You can refer to hukaixuan19970627/DOTA_devkit_YOLO.
-
The Oriented YOLO Longside Format is:
$ classid x_c y_c longside shortside Θ Θ∈[0, 180)
* longside: The longest side of the oriented rectangle.
* shortside: The other side of the oriented rectangle.
* Θ: The angle between the longside and the x-axis(The x-axis rotates clockwise).x轴顺时针旋转遇到最长边所经过的角度
WARNING: IMAGE SIZE MUST MEETS 'HEIGHT = WIDTH'
2.
'train.py'
- All same as ultralytics/yolov5. You better train demo files first before train your custom dataset.
- Single GPU training:
$ python train.py --batch-size 4 --device 0
- Multi GPU training: DistributedDataParallel Mode
python -m torch.distributed.launch --nproc_per_node 4 train.py --sync-bn --device 0,1,2,3
3.
'detect.py'
$ python detect.py