Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add PNA #94

Open
wants to merge 10 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
122 changes: 122 additions & 0 deletions cogdl/models/nn/pyg_pna.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,122 @@
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import ModuleList, Embedding, Sequential, ReLU, Linear
from .. import BaseModel, register_model
from cogdl.data import DataLoader
from torch_geometric.nn import PNAConv, BatchNorm, global_add_pool


@register_model("pyg_pna")
class PNA(BaseModel):
r"""Implements a single convolutional layer of the Principal Neighbourhood Aggregation Networks
in paper `"Principal Neighbourhood Aggregation for Graph Nets" <https://arxiv.org/abs/2004.05718>.`
"""
@staticmethod
def add_args(parser):
parser.add_argument("--num_features", type=int)
parser.add_argument("--num_classes", type=int)
parser.add_argument("--hidden_size", type=int, default=60)
parser.add_argument("--avg_deg", type=int, default=1)
parser.add_argument("--layer", type=int, default=4)
parser.add_argument("--pre_layers", type=int, default=1)
parser.add_argument("--towers", type=int, default=5)
parser.add_argument("--post_layers", type=int, default=1)
parser.add_argument("--edge_dim", type=int, default=None)
parser.add_argument("--aggregators", type=str, nargs="+", default=['mean', 'min', 'max', 'std'])
parser.add_argument("--scalers", type=str, nargs="+", default=['identity', 'amplification', 'attenuation'])
parser.add_argument("--divide_input", action='store_true', default=False)
parser.add_argument("--batch-size", type=int, default=20)
parser.add_argument("--train-ratio", type=float, default=0.7)
parser.add_argument("--test-ratio", type=float, default=0.1)

@classmethod
def build_model_from_args(cls, args):
return cls(
args.num_features,
args.num_classes,
args.hidden_size,
args.avg_deg,
args.layer,
args.pre_layers,
args.towers,
args.post_layers,
args.edge_dim,
args.aggregators,
args.scalers,
args.divide_input
)

@classmethod
def split_dataset(cls, dataset, args):
random.shuffle(dataset)
train_size = int(len(dataset) * args.train_ratio)
test_size = int(len(dataset) * args.test_ratio)
bs = args.batch_size
train_loader = DataLoader(dataset[:train_size], batch_size=bs)
test_loader = DataLoader(dataset[-test_size:], batch_size=bs)
if args.train_ratio + args.test_ratio < 1:
valid_loader = DataLoader(dataset[train_size:-test_size], batch_size=bs)
else:
valid_loader = test_loader
return train_loader, valid_loader, test_loader

def __init__(self, num_feature, num_classes, hidden_size, avg_deg,
layer=4, pre_layers=1, towers=5, post_layers=1,
edge_dim=None,
aggregators=['mean', 'min', 'max', 'std'],
scalers=['identity', 'amplification', 'attenuation'],
divide_input=False):
super(PNA, self).__init__()
self.hidden_size = hidden_size
self.edge_dim = edge_dim

avg_deg = torch.tensor(avg_deg)
emd_side = self.hidden_size // num_feature
self.hidden_size = emd_side * num_feature
self.node_emb = Embedding(num_feature, emd_side)
if self.edge_dim is not None:
self.edge_emb = Embedding(4, edge_dim)

self.convs = ModuleList()
self.batch_norms = ModuleList()
for _ in range(layer):
conv = PNAConv(in_channels=self.hidden_size, out_channels=self.hidden_size,
aggregators=aggregators, scalers=scalers, deg=avg_deg,
edge_dim=edge_dim, towers=towers, pre_layers=pre_layers, post_layers=post_layers,
divide_input=divide_input)
self.convs.append(conv)
self.batch_norms.append(BatchNorm(self.hidden_size))

self.mlp = Sequential(Linear(self.hidden_size, self.hidden_size // 2),
ReLU(),
Linear(self.hidden_size // 2, self.hidden_size // 4),
ReLU(),
Linear(self.hidden_size // 4, num_classes))

self.criterion = nn.CrossEntropyLoss()

def forward(self, b):
x = b.x
edge_index = b.edge_index
edge_attr = b.edge_attr
batch_h = b.batch
n = x.shape[0]

x = self.node_emb(x.long())
x = x.reshape([n, -1])

if self.edge_dim is None:
edge_attr = None
else:
edge_attr = self.edge_emb(edge_attr)

for conv, batch_norm in zip(self.convs, self.batch_norms):
x = F.relu(batch_norm(conv(x, edge_index, edge_attr)))
x = global_add_pool(x, batch_h)
out = self.mlp(x)

if b.y is not None:
return out, self.criterion(out, b.y)
return out, None
77 changes: 77 additions & 0 deletions examples/gnn_models/pna.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
import random
import numpy as np
import torch
from utils import print_result, set_random_seed, get_dataset
from cogdl.tasks import build_task
from cogdl.datasets import build_dataset
from cogdl.utils import build_args_from_dict

DATASET_REGISTRY = {}


def build_default_args_for_graph_classification(dataset):
cpu = not torch.cuda.is_available()
args = {
"lr": 0.001,
"weight_decay": 5e-4,
"max_epoch": 500,
"patience": 50,
"cpu": cpu,
"device_id": [0],
"seed": [0],

"train_ratio": 0.7,
"test_ratio": 0.1,
"batch_size": 128,
"kfold": False,
"degree_feature": False,

"hidden_size": 60,
"avg_deg": 1,
"layer": 4,
"pre_layers": 1,
"towers": 5,
"post_layers": 1,
"edge_dim": None,
"aggregators": ['mean', 'min', 'max', 'std'],
"scalers": ['identity', 'amplification', 'attenuation'],
"divide_input": False,

"task": "graph_classification",
"model": "pyg_pna",
"dataset": dataset
}
return build_args_from_dict(args)


def register_func(name):
def register_func_name(func):
DATASET_REGISTRY[name] = func
return func
return register_func_name


@register_func("proteins")
def proteins_config(args):
return args


def run(dataset_name):
args = build_default_args_for_graph_classification(dataset_name)
args = DATASET_REGISTRY[dataset_name](args)
dataset, args = get_dataset(args)
results = []
for seed in args.seed:
set_random_seed(seed)
task = build_task(args, dataset=dataset)
result = task.train()
results.append(result)
return results


if __name__ == "__main__":
datasets = ["proteins"]
results = []
for x in datasets:
results += run(x)
print_result(results, datasets, "pyg_pna")
1 change: 1 addition & 0 deletions match.yml
Original file line number Diff line number Diff line change
Expand Up @@ -68,6 +68,7 @@ graph_classification:
- patchy_san
- hgpsl
- sagpool
- pyg_pna
dataset:
- mutag
- imdb-b
Expand Down
30 changes: 30 additions & 0 deletions tests/tasks/test_graph_classification.py
Original file line number Diff line number Diff line change
Expand Up @@ -101,6 +101,23 @@ def add_sagpool_args(args):
return args


def add_pna_args(args):
args.hidden_size = 60
args.avg_deg = 3
args.layer = 1
args.train_ratio = 0.7
args.test_ratio = 0.1
args.pooling_ratio = 0.5
args.pre_layers = 1
args.towers = 1
args.post_layers = 1
args.edge_dim = None
args.aggregators = ['mean']
args.scalers = ['identity']
args.divide_input = False
return args


def test_gin_mutag():
args = get_default_args()
args = add_gin_args(args)
Expand Down Expand Up @@ -259,6 +276,17 @@ def test_sagpool_proteins():
assert ret["Acc"] > 0


def test_pna_proteins():
args = get_default_args()
args = add_pna_args(args)
args.dataset = "proteins"
args.model = "pyg_pna"
args.batch_size = 20
task = build_task(args)
ret = task.train()
assert ret["Acc"] > 0


if __name__ == "__main__":

test_gin_imdb_binary()
Expand All @@ -281,3 +309,5 @@ def test_sagpool_proteins():

test_sagpool_mutag()
test_sagpool_proteins()

test_pna_proteins()