Skip to content

Basic implementation of visual monocular SLAM

License

Notifications You must be signed in to change notification settings

SmileyScientist/pyslam

 
 

Repository files navigation

pyslam

This project demonstrates a simple implementation of a monocular SLAM system using ORB feature detectors

Features

  • MP4 video loader
  • KITTI Odometry dataset loader
  • Point cloud visualizer

Requirements

  • Python 3.7+
  • numpy
  • OpenCV
  • g2o
  • pangolin

For g2o and pangolin python bindings, use the forks in my github.

Usage

  • For video files chmod +x system.py && ./system.py --type <VIDEO> --path <test.mp4>
  • For Kitti dataset chmod +x system.py && ./system.py --type <KITTI> --path </path/to/kitti/dataset/sequences/00>

License

All of this code is MIT licensed. Videos and libraries follow their respective licenses.

About

Basic implementation of visual monocular SLAM

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%