Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix nla allocation situation #125

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
55 changes: 27 additions & 28 deletions src/states.jl
Original file line number Diff line number Diff line change
Expand Up @@ -93,6 +93,18 @@ function nla(::NLADefault, x)
return x
end

struct NLAT1 <: NonLinearAlgorithm end

struct NLAT2 <: NonLinearAlgorithm end

struct NLAT3 <: NonLinearAlgorithm end

function nla(nla_type::Union{NLAT1, NLAT2, NLAT3}, x_old)
x_new = similar(x_old)
nla!(nla_type, x_old, x_new)
return x_new
end

"""
NLAT1()
Applies the \$ \\text{T}_1 \$ transformation algorithm, as defined in [1] and [2].
Expand All @@ -105,17 +117,10 @@ ANN, and RNN-LSTM._" (2019).
systems from data: A reservoir computing approach._"
Physical review letters 120.2 (2018): 024102.
"""
struct NLAT1 <: NonLinearAlgorithm end

function nla(::NLAT1, x_old)
x_new = copy(x_old)
for i in 1:size(x_new, 1)
if mod(i, 2)!=0
x_new[i,:] = copy(x_old[i,:].*x_old[i,:])
end
end

return x_new
function nla!(::NLAT1, x_old, x_new)
x_new[2:2:end, :] = x_old[2:2:end, :]
x_new[1:2:end, :] = x_old[1:2:end, :].^2
end

"""
Expand All @@ -126,17 +131,14 @@ Apply the \$ \\text{T}_2 \$ transformation algorithm, as defined in [1].
chaotic system using a hierarchy of deep learning methods: Reservoir computing, ANN,
and RNN-LSTM._" (2019).
"""
struct NLAT2 <: NonLinearAlgorithm end

function nla(::NLAT2, x_old)
x_new = copy(x_old)
for i in 2:size(x_new, 1)-1
if mod(i, 2)!=0
x_new[i,:] = copy(x_old[i-1,:].*x_old[i-2,:])
end
function nla!(::NLAT2, x_old, x_new)
x_new[1, :] = x_old[1, :]
if mod(size(x_new, 1), 2) != 0
x_new[end, :] = x_old[end, :]
end

return x_new
x_new[2:2:end, :] = x_old[2:2:end, :]
x_new[3:2:end-1, :] = x_old[2:2:end-2, :].*x_old[1:2:end-3, :]
end

"""
Expand All @@ -147,15 +149,12 @@ Apply the \$ \\text{T}_3 \$ transformation algorithm, as defined in [1].
chaotic system using a hierarchy of deep learning methods: Reservoir computing, ANN,
and RNN-LSTM._" (2019).
"""
struct NLAT3 <: NonLinearAlgorithm end

function nla(::NLAT3, x_old)
x_new = copy(x_old)
for i in 2:size(x_new, 1)-1
if mod(i, 2)!=0
x_new[i,:] = copy(x_old[i-1,:].*x_old[i+1,:])
end
function nla!(::NLAT3, x_old, x_new)
x_new[1, :] = x_old[1, :]
if mod(size(x_new, 1), 2) != 0
x_new[end, :] = x_old[end, :]
end

return x_new
x_new[2:2:end, :]= x_old[2:2:end, :]
x_new[3:2:end-1, :]= x_old[2:2:end-2, :].*x_old[4:2:end, :]
end