@@ -4,14 +4,13 @@ jupytext:
4
4
extension : .md
5
5
format_name : myst
6
6
format_version : 0.13
7
- jupytext_version : 1.14.5
7
+ jupytext_version : 1.14.4
8
8
kernelspec :
9
9
display_name : Python 3 (ipykernel)
10
10
language : python
11
11
name : python3
12
12
---
13
13
14
-
15
14
# Input-Output Models
16
15
17
16
## Overview
@@ -32,7 +31,6 @@ import networkx as nx
32
31
import matplotlib.pyplot as plt
33
32
```
34
33
35
-
36
34
The following figure illustrates a network of linkages between 15 sectors
37
35
obtained from the US Bureau of Economic Analysis’s 2019 Input-Output Accounts
38
36
Data.
@@ -82,11 +80,11 @@ A, F = build_coefficient_matrices(Z, X)
82
80
83
81
``` {code-cell} ipython3
84
82
---
83
+ :tags: [hide-cell]
85
84
mystnb:
86
85
figure:
87
- caption: " US 15 sector production network"
86
+ caption: US 15 sector production network
88
87
name: us_15sectors
89
- :tags: [hide-cell]
90
88
---
91
89
centrality = qbn_io.eigenvector_centrality(A)
92
90
@@ -103,7 +101,6 @@ qbn_plt.plot_graph(A, X, ax, codes,
103
101
plt.show()
104
102
```
105
103
106
-
107
104
| Label| Sector | Label| Sector | Label| Sector |
108
105
| :---:| :-------------:| :---:| :--------------:| :---:| :-------------------------:|
109
106
| ag | Agriculture | wh | Wholesale | pr | Professional Services |
@@ -129,7 +126,7 @@ In this lecture, we first introduce the standard input-ouput model and approach
129
126
(TODO add link to lpp lecture)
130
127
131
128
132
- ## Input Output Analysis
129
+ ## Input output analysis
133
130
134
131
Let
135
132
150
147
x_j = \min_{i \in \{0, \ldots , n \}} \left( \frac{z_{ij}}{a_{ij}}\right)
151
148
$$
152
149
153
- ### Two Goods
150
+ ### Two goods
154
151
155
152
To illustrate ideas, we begin by setting $n =2$.
156
153
@@ -319,7 +316,7 @@ x #solving for gross ouput
319
316
320
317
+++ {"user_expressions": []}
321
318
322
- ## Production Possibility Frontier
319
+ ## Production possibility frontier
323
320
324
321
The second equation of {eq}`eq:inout_1` can be written
325
322
@@ -407,7 +404,7 @@ that are transposes of one another.
407
404
This connection surfaces again in a classic linear program and its dual.
408
405
409
406
410
- ## Linear Programs
407
+ ## Linear programs
411
408
412
409
A **primal** problem is
413
410
494
491
L = \sum_ {i=0}^{\infty} A^i
495
492
$$
496
493
497
- ### Demand Shocks
494
+ ### Demand shocks
498
495
499
496
Consider the impact of a demand shock $\Delta d$ which shifts demand from $d_0$ to $d_1 = d_0 + \Delta d$.
500
497
518
515
E = \{ (i,j) \in V \times V : a_ {ij}>0\}
519
516
$$
520
517
521
- In {numref }`us_15sectors` weights are indicated by the widths of the arrows, which are proportional to the corresponding input-output coefficients.
518
+ In {ref }`us_15sectors` weights are indicated by the widths of the arrows, which are proportional to the corresponding input-output coefficients.
522
519
523
520
We can now use centrality measures to rank sectors and discuss their importance relative to the other sectors.
524
521
525
- ### Eigenvector Centrality
522
+ ### Eigenvector centrality
526
523
527
524
Eigenvector centrality of a node $i$ is measured by
528
525
$$
531
528
\end{aligned}
532
529
$$
533
530
534
- We plot a bar graph of hub-based eigenvector centrality for the sectors represented in {numref }`us_15sectors`.
531
+ We plot a bar graph of hub-based eigenvector centrality for the sectors represented in {ref }`us_15sectors`.
535
532
536
533
```{code-cell} ipython3
537
534
:tags: [hide-cell]
@@ -542,14 +539,13 @@ ax.set_ylabel("eigenvector centrality", fontsize=12)
542
539
plt.show()
543
540
```
544
541
545
-
546
542
A higher measure indicates higher importance as a supplier.
547
543
548
544
As a result demand shocks in most sectors will significantly impact activity in sectors with high eigenvector centrality.
549
545
550
546
The above figure indicates that manufacturing is the most dominant sector in the US economy.
551
547
552
- ### Output Multipliers
548
+ ### Output multipliers
553
549
554
550
Another way to rank sectors in input output networks is via outuput multipliers.
555
551
@@ -574,11 +570,12 @@ High ranking sectors within this measure are important buyers of intermediate go
574
570
A demand shock in such sectors will cause a large impact on the whole production network.
575
571
576
572
The following figure displays the output multipliers for the sectors represented
577
- in {numref }`us_15sectors`.
573
+ in {ref }`us_15sectors`.
578
574
579
575
```{code-cell} ipython3
580
576
:tags: [hide-cell]
581
577
578
+ A, F = build_coefficient_matrices(Z, X)
582
579
omult = qbn_io.katz_centrality(A, authority=True)
583
580
584
581
fig, ax = plt.subplots()
@@ -588,7 +585,6 @@ ax.set_ylabel("Output multipliers", fontsize=12)
588
585
plt.show()
589
586
```
590
587
591
-
592
588
We observe that manufacturing and agriculture are highest ranking sectors.
593
589
594
590
0 commit comments