Skip to content

Commit efc9a37

Browse files
committed
misc
1 parent 3929623 commit efc9a37

File tree

1 file changed

+30
-37
lines changed

1 file changed

+30
-37
lines changed

lectures/input_output.md

Lines changed: 30 additions & 37 deletions
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,6 @@ kernelspec:
1111
name: python3
1212
---
1313

14-
+++ {"user_expressions": []}
1514

1615
# Input-Output Models
1716

@@ -20,9 +19,8 @@ kernelspec:
2019
This lecture requires the following imports and installs before we proceed.
2120

2221
```{code-cell} ipython3
23-
---
24-
tags: [hide-output]
25-
---
22+
:tags: [hide-output]
23+
2624
!pip install quantecon_book_networks
2725
!pip install quantecon
2826
```
@@ -34,15 +32,14 @@ import networkx as nx
3432
import matplotlib.pyplot as plt
3533
```
3634

37-
+++ {"user_expressions": []}
3835

39-
The following figure illustrates a network of linkages between 15 sectors obtained from the US Bureau of Economic Analysis’s
40-
2019 Input-Output Accounts Data.
36+
The following figure illustrates a network of linkages between 15 sectors
37+
obtained from the US Bureau of Economic Analysis’s 2019 Input-Output Accounts
38+
Data.
4139

4240
```{code-cell} ipython3
43-
---
44-
tags: [hide-cell]
45-
---
41+
:tags: [hide-cell]
42+
4643
import quantecon as qe
4744
import quantecon_book_networks
4845
import quantecon_book_networks.input_output as qbn_io
@@ -58,9 +55,8 @@ mpl.rcParams.update(mpl.rcParamsDefault)
5855
```
5956

6057
```{code-cell} ipython3
61-
---
62-
tags: [hide-cell]
63-
---
58+
:tags: [hide-cell]
59+
6460
def build_coefficient_matrices(Z, X):
6561
"""
6662
Build coefficient matrices A and F from Z and X via
@@ -88,9 +84,9 @@ A, F = build_coefficient_matrices(Z, X)
8884
---
8985
mystnb:
9086
figure:
91-
caption: "US 15 Sector Production Network"
87+
caption: "US 15 sector production network"
9288
name: us_15sectors
93-
tags: [hide-input]
89+
:tags: [hide-cell]
9490
---
9591
centrality = qbn_io.eigenvector_centrality(A)
9692
@@ -107,7 +103,6 @@ qbn_plt.plot_graph(A, X, ax, codes,
107103
plt.show()
108104
```
109105

110-
+++ {"user_expressions": []}
111106

112107
|Label| Sector |Label| Sector |Label| Sector |
113108
|:---:|:-------------:|:---:|:--------------:|:---:|:-------------------------:|
@@ -117,19 +112,22 @@ plt.show()
117112
| co | Construction | in | Information | ot | Other Services (exc govt) |
118113
| ma | Manufacturing | fi | Finance | go | Government |
119114

120-
+++ {"user_expressions": []}
121115

122-
An arrow from $i$ to $j$ implies that sector $i$ supplies some of its output as raw material to sector $j$.
116+
An arrow from $i$ to $j$ implies that sector $i$ supplies some of its output as
117+
raw material to sector $j$.
123118

124-
Economies are characterised by many such complex and interdependent multisector production networks.
119+
Economies are characterised by many such complex and interdependent multisector
120+
production networks.
125121

126-
A basic framework for their analysis is [Leontief's](https://en.wikipedia.org/wiki/Wassily_Leontief) input-output model.
122+
A basic framework for their analysis is
123+
[Leontief's](https://en.wikipedia.org/wiki/Wassily_Leontief) input-output model.
127124

128125
This model's key aspect is its simplicity.
129126

130-
In this lecture, we first introduce the standard input-ouput model and approach it as a [linear programming](link to lpp lecture) problem.
127+
In this lecture, we first introduce the standard input-ouput model and approach it as a linear programming problem.
128+
129+
(TODO add link to lpp lecture)
131130

132-
+++ {"user_expressions": []}
133131

134132
## Input Output Analysis
135133

@@ -149,7 +147,7 @@ Let
149147
The production function for goods $j \in \{1, \ldots , n\}$ is the **Leontief** function
150148

151149
$$
152-
x_j = \min_{i \in \{0, \ldots , n \}} \left( \frac{z_{ij}}{a_{ij}}\right)
150+
x_j = \min_{i \in \{0, \ldots , n \}} \left( \frac{z_{ij}}{a_{ij}}\right)
153151
$$
154152

155153
### Two Goods
@@ -160,7 +158,7 @@ The following is a simple illustration of this network.
160158

161159
```{code-cell} ipython3
162160
---
163-
tags: [hide-input]
161+
:tags: [hide-cell]
164162
---
165163
G = nx.DiGraph()
166164
@@ -192,8 +190,6 @@ plt.text(1.6,-0.5, r'$d_{2}$')
192190
plt.show()
193191
```
194192

195-
+++ {"user_expressions": []}
196-
197193
**Feasible allocations must satisfy**
198194

199195
$$
@@ -208,7 +204,7 @@ This can be graphically represented as follows.
208204

209205
```{code-cell} ipython3
210206
---
211-
tags: [hide-input]
207+
:tags: [hide-cell]
212208
---
213209
from matplotlib.patches import Polygon
214210
@@ -455,7 +451,7 @@ The dual problem can be graphically represented as follows.
455451
456452
```{code-cell} ipython3
457453
---
458-
tags: [hide-input]
454+
:tags: [hide-cell]
459455
---
460456
from matplotlib.patches import Polygon
461457
@@ -522,8 +518,7 @@ $$
522518
E = \{(i,j) \in V \times V : a_{ij}>0\}
523519
$$
524520
525-
In {numref}`us_15sectors` weights are indicated by the widths of the arrows, which are proportional to the corresponding
526-
input-output coefficients.
521+
In {numref}`us_15sectors` weights are indicated by the widths of the arrows, which are proportional to the corresponding input-output coefficients.
527522
528523
We can now use centrality measures to rank sectors and discuss their importance relative to the other sectors.
529524
@@ -539,15 +534,14 @@ $$
539534
We plot a bar graph of hub-based eigenvector centrality for the sectors represented in {numref}`us_15sectors`.
540535
541536
```{code-cell} ipython3
542-
tags: [hide-input]
537+
:tags: [hide-cell]
543538
544539
fig, ax = plt.subplots()
545540
ax.bar(codes, centrality, color=color_list, alpha=0.6)
546541
ax.set_ylabel("eigenvector centrality", fontsize=12)
547542
plt.show()
548543
```
549544
550-
+++ {"user_expressions": []}
551545
552546
A higher measure indicates higher importance as a supplier.
553547
@@ -579,10 +573,11 @@ High ranking sectors within this measure are important buyers of intermediate go
579573
580574
A demand shock in such sectors will cause a large impact on the whole production network.
581575
582-
The following figure displays the output multipliers for the sectors represented in {numref}`us_15sectors`.
576+
The following figure displays the output multipliers for the sectors represented
577+
in {numref}`us_15sectors`.
583578
584579
```{code-cell} ipython3
585-
tags: [hide-input]
580+
:tags: [hide-cell]
586581
587582
omult = qbn_io.katz_centrality(A, authority=True)
588583
@@ -593,19 +588,17 @@ ax.set_ylabel("Output multipliers", fontsize=12)
593588
plt.show()
594589
```
595590
596-
+++ {"user_expressions": []}
597591
598592
We observe that manufacturing and agriculture are highest ranking sectors.
599593
600-
+++ {"user_expressions": []}
601594
602595
## Exercises
603596
604597
```{exercise-start}
605598
:label: io_ex1
606599
```
607600
608-
{cite}DoSSo Chapter 9 carries along an example with the following
601+
{cite}`DoSSo` Chapter 9 discusses an example with the following
609602
parameter settings:
610603
611604
$$

0 commit comments

Comments
 (0)