Skip to content

Commit

Permalink
DONE
Browse files Browse the repository at this point in the history
  • Loading branch information
PhilipNelson5 committed Oct 13, 2018
1 parent c371245 commit fe85a6c
Show file tree
Hide file tree
Showing 2 changed files with 71 additions and 18 deletions.
Binary file modified MATH5210_Analysis/hw7/source.pdf
Binary file not shown.
89 changes: 71 additions & 18 deletions MATH5210_Analysis/hw7/source.tex
Original file line number Diff line number Diff line change
Expand Up @@ -37,9 +37,9 @@ \section*{1}

\medskip

\textbf{Proof:} Let $\E > 0$ be given. Then there exists $\delta > 0$ s.t.\ for any $x, y \in [2,4]$ \[|x-y| < \delta \Rightarrow |f(x) - f(y)| < \E\]
\textbf{Proof:} Let $\E > 0$ be given. Choose $\delta = \frac{\E}{10}$, then for any $x, y \in [2,4]$ \[|x-y| < \delta \Rightarrow |f(x) - f(y)| < \E\]

Choose $\delta = \frac{\E}{10}$. Then
Then,

\[|f(x)-f(y)| = |x^2 + 2x - 3 - y^2 - 2y + 3|\]

Expand All @@ -53,9 +53,15 @@ \section*{1}

\[= \delta|x + y + 2|\]

We need to bound $x + y + 2$ above and since it is an increasing function, it will achieve its maximum at the upper bound of it's domain when $x,y = 4$. Therefore
By the triangle inequality,

\[<\delta|4+4+2|\]
\[< \delta\left(|x| + |y| + 2\right)\]

We need to bound $x + y + 2$ above. Since it is an increasing function, it will achieve its maximum when $x$ and $y$ are maximized. This occurs at the upper bound of the domain when $x,y = 4$. Therefore

\[\delta\left(|x| + |y| + 2\right)<\delta(4+4+2)\]

Which is $10\delta$, and because we chose $\delta=\frac{\E}{10}$

\[=10\delta = \E\]

Expand All @@ -69,17 +75,47 @@ \section*{2}

\medskip

\textbf{Proof:}
\textbf{Proof:} Let $\E > 0$ be given. Choose $\delta = \frac{\E}{24}$, then for any $x, y \in [0,10]$ \[|x-y| < \delta \Rightarrow |f(x) - f(y)| < \E\]

Then,

\[|f(x)-f(y)| = |x^2 + 2x - 3 - y^2 - 2y + 3|\]

\[= |x^2 - y^2 + 2x - 2y|\]

\[= |(x-y)(x+y) + 2(x-y)|\]

Since $|x-y| < \delta$

\[< |\delta(x+y) + 2\delta|\]

\[= \delta|x + y + 2|\]

By the triangle inequality,

\[< \delta\left(|x| + |y| + 2\right)\]

We need to bound $x + y + 2$ above. Since it is an increasing function, it will achieve its maximum when $x$ and $y$ are maximized. This occurs at the upper bound of the domain when $x,y = 10$. Therefore

\[\delta\left(|x| + |y| + 2\right)<\delta(10+10+2)\]

Which is $24\delta$, and because we chose $\delta=\frac{\E}{24}$

\[=24\delta = \E\]

Therefore $f(x) = x^2 + 2x -3$ is uniformly continuous on the interval $[0,10]$.

\qedsym

\section*{3}

\textbf{Claim:} $g(x) = \frac{1}{x+1}$ is uniformly continuous on the interval $[0,5]$.

\medskip

\textbf{Proof:} Let $\E > 0$ be given. There exists $\delta > 0$ s.t.\ for any $x, y \in [0,5]$ \[|x-y| < \delta \Rightarrow |f(x) - f(y)| < \E\]
\textbf{Proof:} Let $\E > 0$ be given. Choose $\delta = \E$ then for any $x, y \in [0,5]$ \[|x-y| < \delta \Rightarrow |f(x) - f(y)| < \E\]

Choose $\delta = \E$ then
Then,

\[|f(x) - f(y)| = \left|\frac{1}{x+1} - \frac{1}{y+1}\right|\]

Expand All @@ -95,9 +131,7 @@ \section*{3}

\[ < \delta\left|\frac{1}{(0+1)(0+1)}\right|\]

\[ = \delta\left|\frac{1}{1}\right| = \E\]

Therefore $g(x) = \frac{1}{x+1}$ is uniformly continuous on the interval $[0,5]$.
Which is equal to $\delta$, and because we chose $\delta=\E$, therefore $\left|f(x)-f(y)\right|<\E$ so $g(x) = \frac{1}{x+1}$ is uniformly continuous on the interval $[0,5]$.

\qedsym

Expand All @@ -107,17 +141,37 @@ \section*{4}

\medskip

\textbf{Proof:}
\textbf{Proof:} Let $\E > 0$ be given. Choose $\delta = \E$ then for any $x, y \in [0,\infty)$ \[|x-y| < \delta \Rightarrow |f(x) - f(y)| < \E\]

Then,

\[|f(x) - f(y)| = \left|\frac{1}{x+1} - \frac{1}{y+1}\right|\]

\[ = \left|\frac{y+1-x-1}{(x+1)(y+1)}\right|\]

\[ = \left|\frac{x-y}{(x+1)(y+1)}\right|\]

Since $|x-y| < \delta$

\[< \delta\left|\frac{1}{(x+1)(y+1)}\right|\]

We need to bound $\frac{1}{(x+1)(y+1)}$ above and since it is a decreasing function, it will achieve it's maximum at the lower bound of it's domain when $x,y = 0$. Therefore

\[ < \delta\left|\frac{1}{(0+1)(0+1)}\right|\]

Which is equal to $\delta$, and because we chose $\delta=\E$, therefore $\left|f(x)-f(y)\right|<\E$ so $g(x) = \frac{1}{x+1}$ is uniformly continuous on the interval $[0,\infty)$.

\qedsym

\section*{5}

\textbf{Claim:} $h(x) = \frac{x}{x+1}$ is uniformly continuous on the interval $[0, \infty)$.

\medskip

\textbf{Proof:} Let $\E > 0$ be given. Then there exists $\delta > 0$ s.t.\ for all $x,y\in[0,\infty]$ with $|x-y|<\delta$ then $|f(x)-f(y)| < \E$. Choose $\delta = \E$ then
\textbf{Proof:} Let $\E > 0$ be given. Choose $\delta = \E$, then for all $x,y\in[0,\infty)$ with $|x-y|<\delta$ then $|f(x)-f(y)| < \E$. Then

\[f(x)-f(y)| = \left|\frac{x}{x+1}-\frac{y}{y+1}\right|\]
\[\left|f(x)-f(y)\right| = \left|\frac{x}{x+1}-\frac{y}{y+1}\right|\]

\[= \left|\frac{x-y+xy-xy}{(x+1)(y+1)}\right|\]

Expand All @@ -129,9 +183,8 @@ \section*{5}

\[<\delta\left|\frac{1}{(0+1)(0+1)}\right|\]

\[=\delta\left|\frac{1}{1}\right| = \delta = \E\]

Therefore $h(x) = \frac{x}{x+1}$ is uniformly continuous on the interval $[0, \infty)$.
Which is equal to $\delta$, and because we chose $\delta=\E$, therefore $\left|f(x)-f(y)\right|<\E$ so $h(x) = \frac{x}{x+1}$ is uniformly continuous on the interval $[0, \infty)$.

\qedsym

Expand All @@ -141,7 +194,7 @@ \section*{6}

\medskip

\textbf{Proof:} Let $\E > 0$ be given. Then there exists $\delta > 0$ s.t.\ for all $x,y\in\R$ with $|x-y|<\delta$ then $|f(x)-f(y)| < \E$. Choose $\delta = \min\{1, \E\}$ then
\textbf{Proof:} Let $\E > 0$ be given. Choose $\delta = \min\{1, \E\}$, then for all $x,y\in\R$ with $|x-y|<\delta$ then $|f(x)-f(y)| < \E$. Then

\[|f(x) - f(y)| = \left|\frac{1}{x^2+1}-\frac{1}{y^2 + 1}\right|\]

Expand All @@ -151,7 +204,7 @@ \section*{6}

\[< \delta\left|\frac{(x+y)}{(x^2+1)(y^2+1)}\right|\]

then we can leverage the triangle inequality
By the triangle inequality

\[< \delta\left(\frac{|x|}{|x^2+1||y^2+1|}+\frac{|y|}{|x^2+1||y^2+1|}\right)\]

Expand Down Expand Up @@ -219,7 +272,7 @@ \section*{7}

\[=0+0+2=2\]

Since $\ds\lim_{n\to\infty}f(a_n)-f(b_n)$ clearly does not equal $0$ then $f(x)$ is not uniformly continuous on $[0, \infty]$.
Since $\ds\lim_{n\to\infty}f(a_n)-f(b_n)$ clearly does not equal $0$ then $f(x)$ is not uniformly continuous on $[0, \infty)$.

\qedsym

Expand Down

0 comments on commit fe85a6c

Please sign in to comment.