Skip to content

PSPhi/CGEN-GPRE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

The molecular conditional generation and property prediction models are built with Pytorch (>=v1.7) and DGL-LifeSci.

Structure

utils.py : Dataset preparation and utils function.

model.py : Generative and prediction model.

config.py : Parameters of the two models.

cgen.py : Code for training and testing the generative model.

pre.py : Code for training and testing the prediction model.

sample.py : Code for sampling.

References

[1] Peng, S.-P.; Zhao, Y. Convolutional Neural Networks for the Design and Analysis of Non-Fullerene Acceptors. J. Chem. Inf. Model. 2019, 59, 4993–5001. [Paper] [Code]

[1] Gehring, J.; Auli, M.; Grangier, D.; Yarats, D.; Dauphin, Y. N. Convolutional Sequence to Sequence Learning. 2017. [Paper] [Code]

[2] Bai, S.; Kolter, J. Z.; Koltun, V. An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling. 2018. [Paper] [Code]

[3] Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph Attention Networks. 2018. [Paper]

[4] Lopez S A, Sanchez-Lengeling B, de Goes Soares J, et al. Design principles and top non-fullerene acceptor candidates for organic photovoltaics[J]. Joule, 2017, 1(4): 857-870. [Paper] [Code]

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages