This is a sample code program that builds functionalities (virtual keyboard, touchpad, and drawboard) upon hand gesture recognition project (this one) which utilizes a simple MLP using key points detected with Mediapipe.
This repository contains the following contents.
- Sample program
- Hand sign recognition model(TFLite)
- Hand controlled virtual touchpad
- Hand controlled virtual keyboard
- Hand controlled virtual drawboard
* mediapipe 0.8.1
* OpenCV 3.4.2 or Later
* Tensorflow 2.3.0 or Later<br>tf-nightly 2.5.0.dev or later (Only when creating a TFLite for an LSTM model)
- scikit-learn 0.23.2 or Later (Only if you want to display the confusion matrix)
- matplotlib 3.3.2 or Later (Only if you want to display the confusion matrix)
- pyautogui 0.9.54 or Later
Here's how to run the demo using your webcam.
python app.py
The following options can be specified when running the demo.
- --device
Specifying the camera device number (Default:0) - --width
Width at the time of camera capture (Default:960) - --height
Height at the time of camera capture (Default:540) - --use_static_image_mode
Whether to use static_image_mode option for MediaPipe inference (Default:Unspecified) - --min_detection_confidence
Detection confidence threshold (Default:0.5) - --min_tracking_confidence
Tracking confidence threshold (Default:0.5) - --function to be enabled
- --max_num of hands detected
│ app.py │ keypoint_classification.ipynb │ point_history_classification.ipynb │ ├─model │ ├─keypoint_classifier │ │ │ keypoint.csv │ │ │ keypoint_classifier.hdf5 │ │ │ keypoint_classifier.py │ │ │ keypoint_classifier.tflite │ │ └─ keypoint_classifier_label.csv │ │ │ └─point_history_classifier │ │ point_history.csv │ │ point_history_classifier.hdf5 │ │ point_history_classifier.py │ │ point_history_classifier.tflite │ └─ point_history_classifier_label.csv ├─plugin │ ├─cnn_model │ │ │ dataCNN │ │ │ cnn_labels.json │ │ │ cnn.py │ │ │ getdata.py │ │ │ load_model.py │ │ └─ make_labels.py │ │ │ │ blackboard.py │ │ keyboard.py │ │ mouse.py │ │ stablediffusion.py │ │ UI.py │ └─point_history_classifier │ │ └─utils └─cvfpscalc.py
This is a sample program for inference.
In addition, learning data (key points) for hand sign recognition,
You can also collect training data (index finger coordinate history) for finger gesture recognition.
This is a model training script for hand sign recognition.
This is a model training script for finger gesture recognition.
This directory stores files related to hand sign recognition.
The following files are stored.
- Training data(keypoint.csv)
- Trained model(keypoint_classifier.tflite)
- Label data(keypoint_classifier_label.csv)
- Inference module(keypoint_classifier.py)
This directory stores files related to finger gesture recognition.
The following files are stored.
- Training data(point_history.csv)
- Trained model(point_history_classifier.tflite)
- Label data(point_history_classifier_label.csv)
- Inference module(point_history_classifier.py)
This is directory stores the different functions as plugins that will be inserted in app.py.
The following folders/files are stored.
- cnn_model
- blackboard.py
- keyboard.py
- mouse.py
- stablediffusion.py
- UI.py
This is a module for FPS measurement.