Skip to content

Commit

Permalink
Add files via upload
Browse files Browse the repository at this point in the history
  • Loading branch information
Sun-zhenghao-BU authored Oct 12, 2022
1 parent b74a9cf commit b69b048
Showing 1 changed file with 97 additions and 0 deletions.
97 changes: 97 additions & 0 deletions UNet_model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
import torch
import torch.nn as nn
import torch.nn.functional as F


class double_conv2d_bn(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, strides=1, padding=1):
super(double_conv2d_bn, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels,
kernel_size=kernel_size,
stride=strides, padding=padding, bias=True)
self.conv2 = nn.Conv2d(out_channels, out_channels,
kernel_size=kernel_size,
stride=strides, padding=padding, bias=True)
self.bn1 = nn.BatchNorm2d(out_channels)
self.bn2 = nn.BatchNorm2d(out_channels)

def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = F.relu(self.bn2(self.conv2(out)))
return out


class deconv2d_bn(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=2, strides=2):
super(deconv2d_bn, self).__init__()
self.conv1 = nn.ConvTranspose2d(in_channels, out_channels,
kernel_size=kernel_size,
stride=strides, bias=True)
self.bn1 = nn.BatchNorm2d(out_channels)

def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
return out


class Unet(nn.Module):
def __init__(self):
super(Unet, self).__init__()
self.layer1_conv = double_conv2d_bn(1, 8)
self.layer2_conv = double_conv2d_bn(8, 16)
self.layer3_conv = double_conv2d_bn(16, 32)
self.layer4_conv = double_conv2d_bn(32, 64)
self.layer5_conv = double_conv2d_bn(64, 128)
self.layer6_conv = double_conv2d_bn(128, 64)
self.layer7_conv = double_conv2d_bn(64, 32)
self.layer8_conv = double_conv2d_bn(32, 16)
self.layer9_conv = double_conv2d_bn(16, 8)
self.layer10_conv = nn.Conv2d(8, 1, kernel_size=3,
stride=1, padding=1, bias=True)

self.deconv1 = deconv2d_bn(128, 64)
self.deconv2 = deconv2d_bn(64, 32)
self.deconv3 = deconv2d_bn(32, 16)
self.deconv4 = deconv2d_bn(16, 8)

self.sigmoid = nn.Sigmoid()

def forward(self, x):
conv1 = self.layer1_conv(x)
pool1 = F.max_pool2d(conv1, 2)

conv2 = self.layer2_conv(pool1)
pool2 = F.max_pool2d(conv2, 2)

conv3 = self.layer3_conv(pool2)
pool3 = F.max_pool2d(conv3, 2)

conv4 = self.layer4_conv(pool3)
pool4 = F.max_pool2d(conv4, 2)

conv5 = self.layer5_conv(pool4)

convt1 = self.deconv1(conv5)
concat1 = torch.cat([convt1, conv4], dim=1)
conv6 = self.layer6_conv(concat1)

convt2 = self.deconv2(conv6)
concat2 = torch.cat([convt2, conv3], dim=1)
conv7 = self.layer7_conv(concat2)

convt3 = self.deconv3(conv7)
concat3 = torch.cat([convt3, conv2], dim=1)
conv8 = self.layer8_conv(concat3)

convt4 = self.deconv4(conv8)
concat4 = torch.cat([convt4, conv1], dim=1)
conv9 = self.layer9_conv(concat4)
outp = self.layer10_conv(conv9)
outp = self.sigmoid(outp)
return outp


model = Unet()
inp = torch.rand(10, 1, 224, 224)
outp = model(inp)
print(outp.shape)

0 comments on commit b69b048

Please sign in to comment.