Skip to content

Commit

Permalink
supporting multiple regions or zones as inputs to current instance ty…
Browse files Browse the repository at this point in the history
…pes (+5 squashed commits)

Squashed commits:
[aa15bd9] joey changes on new types
[592def6] consolidate current instance type (str), count (interval), cpu% (interval) into a new model object
[82dd4c5] required cluster type parameter is now per zone
[0ce2064] Moved instance type definition inside interface (joey comments addressed)
[352a776] Add cpu utilization as a parameter in extra model arguments; If you have cpu usage already use it directly
  • Loading branch information
ramsrivatsak authored and abersnaze committed Oct 24, 2023
1 parent 8b6bef1 commit a76552e
Show file tree
Hide file tree
Showing 5 changed files with 187 additions and 94 deletions.
8 changes: 8 additions & 0 deletions service_capacity_modeling/capacity_planner.py
Original file line number Diff line number Diff line change
Expand Up @@ -575,6 +575,14 @@ def generate_scenarios(
if len(allowed_drives) == 0:
allowed_drives.update(hardware.drives.keys())

# Get current instance object if exists
if desires.current_clusters:
for zonal_cluster_capacity in desires.current_clusters.zonal:
zonal_cluster_capacity.cluster_instance = hardware.instances[zonal_cluster_capacity.cluster_instance_name]
for regional_cluster_capacity in desires.current_clusters.regional:
regional_cluster_capacity.cluster_instance = hardware.instances[regional_cluster_capacity.cluster_instance_name]

plans = []
if model.run_hardware_simulation():
for instance in hardware.instances.values():
if not _allow_instance(
Expand Down
31 changes: 28 additions & 3 deletions service_capacity_modeling/interface.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,6 @@
from pydantic import BaseModel
from pydantic import Field


GIB_IN_BYTES = 1024 * 1024 * 1024
MIB_IN_BYTES = 1024 * 1024
MEGABIT_IN_BYTES = (1000 * 1000) / 8
Expand Down Expand Up @@ -377,7 +376,7 @@ def annual_cost_gib(self, data_gib: float = 0):
break
if transfer_cost[0] > 0:
annual_cost += (
min(_annual_data, transfer_cost[0]) * transfer_cost[1]
min(_annual_data, transfer_cost[0]) * transfer_cost[1]
)
_annual_data -= transfer_cost[0]
else:
Expand Down Expand Up @@ -621,6 +620,29 @@ class DataShape(ExcludeUnsetModel):
)


class CurrentClusterCapacity(ExcludeUnsetModel):
cluster_instance_name: str
cluster_instance: Optional[Instance]
cluster_instance_count: Interval
cpu_utilization: Interval


# For services that are provisioned by zone (e.g. Cassandra, EVCache)
class CurrentZoneClusterCapacity(CurrentClusterCapacity):
pass


# For services that are provisioned regionally (e.g. Java services, RDS, etc ..)
class CurrentRegionClusterCapacity(CurrentClusterCapacity):
pass


class CurrentClusters(ExcludeUnsetModel):
zonal: Sequence[CurrentZoneClusterCapacity] = []
regional: Sequence[CurrentRegionClusterCapacity] = []
services: Sequence[ServiceCapacity] = []


class CapacityDesires(ExcludeUnsetModel):
# How critical is this cluster, impacts how much "extra" we provision
# 0 = Critical to the product (Product does not function)
Expand All @@ -635,6 +657,9 @@ class CapacityDesires(ExcludeUnsetModel):
# What will the state look like
data_shape: DataShape = DataShape()

# What is the current microarchitectural/system configuration of the system
current_clusters: Optional[CurrentClusters]

# When users are providing latency estimates, what is the typical
# instance core frequency we are comparing to. Databases use i3s a lot
# hence this default
Expand Down Expand Up @@ -733,7 +758,7 @@ class Requirements(ExcludeUnsetModel):
# pylint: disable=unused-argument
@staticmethod
def regret(
name: str, optimal_plan: "CapacityPlan", proposed_plan: "CapacityPlan"
name: str, optimal_plan: "CapacityPlan", proposed_plan: "CapacityPlan"
) -> float:
return 0.0

Expand Down
115 changes: 61 additions & 54 deletions service_capacity_modeling/models/org/netflix/cassandra.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,44 +40,51 @@


def _write_buffer_gib_zone(
desires: CapacityDesires, zones_per_region: int, flushes_before_compaction: int = 4
desires: CapacityDesires, zones_per_region: int, flushes_before_compaction: int = 4
) -> float:
# Cassandra has to buffer writes before flushing to disk, and assuming
# we will compact every 4 flushes and we want no more than 2 redundant
# compactions in an hour, we want <= 4**2 = 16 flushes per hour
# or a flush of data every 3600 / 16 = 225 seconds
write_bytes_per_second = (
desires.query_pattern.estimated_write_per_second.mid
* desires.query_pattern.estimated_mean_write_size_bytes.mid
desires.query_pattern.estimated_write_per_second.mid
* desires.query_pattern.estimated_mean_write_size_bytes.mid
)

compactions_per_hour = 2
hour_in_seconds = 60 * 60

write_buffer_gib = (
(write_bytes_per_second * hour_in_seconds)
/ (flushes_before_compaction**compactions_per_hour)
) / (1 << 30)
(write_bytes_per_second * hour_in_seconds)
/ (flushes_before_compaction ** compactions_per_hour)
) / (1 << 30)

return float(write_buffer_gib) / zones_per_region


def _estimate_cassandra_requirement(
instance: Instance,
desires: CapacityDesires,
working_set: float,
reads_per_second: float,
max_rps_to_disk: int,
zones_per_region: int = 3,
copies_per_region: int = 3,
instance: Instance,
desires: CapacityDesires,
working_set: float,
reads_per_second: float,
max_rps_to_disk: int,
required_cluster_size: Optional[int] = None,
zones_per_region: int = 3,
copies_per_region: int = 3,
) -> CapacityRequirement:
"""Estimate the capacity required for one zone given a regional desire
The input desires should be the **regional** desire, and this function will
return the zonal capacity requirement
"""
# Keep half of the cores free for background work (compaction, backup, repair)
needed_cores = sqrt_staffed_cores(desires) * 2
current_capacity = None if desires.current_clusters is None else desires.current_clusters.zonal[0] if len(desires.current_clusters.zonal) else desires.current_clusters.regional[0]
# Keep half of the cores free for background work (compaction, backup, repair). Currently, zones and regions are
# configured in a homogeneous manner. Hence, we just take any one of the current cluster configuration
if current_capacity and current_capacity.cluster_instance and required_cluster_size is not None:
needed_cores = (current_capacity.cluster_instance.cpu * required_cluster_size *
zones_per_region) * (current_capacity.cpu_utilization.high / 20)
else:
needed_cores = sqrt_staffed_cores(desires) * 2
# Keep half of the bandwidth available for backup
needed_network_mbps = simple_network_mbps(desires) * 2

Expand Down Expand Up @@ -168,22 +175,21 @@ def _upsert_params(cluster, params):
# pylint: disable=too-many-return-statements
# flake8: noqa: C901
def _estimate_cassandra_cluster_zonal(
instance: Instance,
drive: Drive,
context: RegionContext,
desires: CapacityDesires,
zones_per_region: int = 3,
copies_per_region: int = 3,
require_local_disks: bool = False,
require_attached_disks: bool = False,
required_cluster_size: Optional[int] = None,
max_rps_to_disk: int = 500,
max_local_disk_gib: int = 2048,
max_regional_size: int = 96,
max_write_buffer_percent: float = 0.25,
max_table_buffer_percent: float = 0.11,
instance: Instance,
drive: Drive,
context: RegionContext,
desires: CapacityDesires,
zones_per_region: int = 3,
copies_per_region: int = 3,
require_local_disks: bool = False,
require_attached_disks: bool = False,
required_cluster_size: Optional[int] = None,
max_rps_to_disk: int = 500,
max_local_disk_gib: int = 2048,
max_regional_size: int = 96,
max_write_buffer_percent: float = 0.25,
max_table_buffer_percent: float = 0.11,
) -> Optional[CapacityPlan]:

# Netflix Cassandra doesn't like to deploy on really small instances
if instance.cpu < 2 or instance.ram_gib < 14:
return None
Expand All @@ -202,7 +208,7 @@ def _estimate_cassandra_cluster_zonal(

rps = desires.query_pattern.estimated_read_per_second.mid // zones_per_region
write_per_sec = (
desires.query_pattern.estimated_write_per_second.mid // zones_per_region
desires.query_pattern.estimated_write_per_second.mid // zones_per_region
)
write_bytes_per_sec = round(
write_per_sec * desires.query_pattern.estimated_mean_write_size_bytes.mid
Expand Down Expand Up @@ -238,6 +244,7 @@ def _estimate_cassandra_cluster_zonal(
working_set=working_set,
reads_per_second=rps,
max_rps_to_disk=max_rps_to_disk,
required_cluster_size=required_cluster_size,
zones_per_region=zones_per_region,
copies_per_region=copies_per_region,
)
Expand All @@ -250,8 +257,8 @@ def _estimate_cassandra_cluster_zonal(
min_count = 2

base_mem = (
desires.data_shape.reserved_instance_app_mem_gib
+ desires.data_shape.reserved_instance_system_mem_gib
desires.data_shape.reserved_instance_app_mem_gib
+ desires.data_shape.reserved_instance_system_mem_gib
)

heap_fn = _cass_heap_for_write_buffer(
Expand Down Expand Up @@ -334,7 +341,7 @@ def _estimate_cassandra_cluster_zonal(
annual_cost=blob.annual_cost_gib(requirement.disk_gib.mid),
service_params={
"nines_required": (
1 - 1.0 / desires.data_shape.durability_slo_order.mid
1 - 1.0 / desires.data_shape.durability_slo_order.mid
)
},
)
Expand Down Expand Up @@ -377,15 +384,15 @@ def _cass_io_per_read(node_size_gib, sstable_size_mb=160):


def _cass_heap_for_write_buffer(
instance: Instance,
write_buffer_gib: float,
max_zonal_size: int,
buffer_percent: float,
instance: Instance,
write_buffer_gib: float,
max_zonal_size: int,
buffer_percent: float,
) -> Callable[[float], float]:
# If there is no way we can get enough heap with the max zonal size, try
# letting max heap grow to 31 GiB per node to get more write buffer
if write_buffer_gib > (
max_zonal_size * _cass_heap(instance.ram_gib) * buffer_percent
max_zonal_size * _cass_heap(instance.ram_gib) * buffer_percent
):
return lambda x: _cass_heap(x, max_heap_gib=30)
else:
Expand All @@ -410,9 +417,9 @@ def _target_rf(desires: CapacityDesires, user_copies: Optional[int]) -> int:
# run with RF=2
consistency = desires.query_pattern.access_consistency.same_region
if (
desires.data_shape.durability_slo_order.mid < 1000
and consistency is not None
and consistency.target_consistency != AccessConsistency.read_your_writes
desires.data_shape.durability_slo_order.mid < 1000
and consistency is not None
and consistency.target_consistency != AccessConsistency.read_your_writes
):
return 2
return 3
Expand All @@ -422,7 +429,7 @@ class NflxCassandraArguments(BaseModel):
copies_per_region: int = Field(
default=3,
description="How many copies of the data will exist e.g. RF=3. If unsupplied"
" this will be deduced from durability and consistency desires",
" this will be deduced from durability and consistency desires",
)
require_local_disks: bool = Field(
default=False,
Expand Down Expand Up @@ -451,25 +458,25 @@ class NflxCassandraArguments(BaseModel):
max_write_buffer_percent: float = Field(
default=0.25,
description="The amount of heap memory that can be used to buffer writes. "
"Note that if there are more than 100k writes this will "
"automatically adjust to 0.5",
"Note that if there are more than 100k writes this will "
"automatically adjust to 0.5",
)
max_table_buffer_percent: float = Field(
default=0.11,
description="How much of heap memory can be used for a single table. "
"Note that if there are more than 100k writes this will "
"automatically adjust to 0.2",
"Note that if there are more than 100k writes this will "
"automatically adjust to 0.2",
)


class NflxCassandraCapacityModel(CapacityModel):
@staticmethod
def capacity_plan(
instance: Instance,
drive: Drive,
context: RegionContext,
desires: CapacityDesires,
extra_model_arguments: Dict[str, Any],
instance: Instance,
drive: Drive,
context: RegionContext,
desires: CapacityDesires,
extra_model_arguments: Dict[str, Any],
) -> Optional[CapacityPlan]:
# Use durabiliy and consistency to compute RF.
copies_per_region = _target_rf(
Expand All @@ -496,8 +503,8 @@ def capacity_plan(

# Adjust heap defaults for high write clusters
if (
desires.query_pattern.estimated_write_per_second.mid >= 100_000
and desires.data_shape.estimated_state_size_gib.mid >= 100
desires.query_pattern.estimated_write_per_second.mid >= 100_000
and desires.data_shape.estimated_state_size_gib.mid >= 100
):
max_write_buffer_percent = max(0.5, max_write_buffer_percent)
max_table_buffer_percent = max(0.2, max_table_buffer_percent)
Expand Down
Loading

0 comments on commit a76552e

Please sign in to comment.