Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

DID loop split for SDPA #3711

Open
wants to merge 5 commits into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
139 changes: 139 additions & 0 deletions tests/python/test_multidevice.py
Original file line number Diff line number Diff line change
Expand Up @@ -288,6 +288,145 @@ def assert_close(actual, expected):
assert_close(v_grad, head_parallelize(expected_v_grad))


@pytest.mark.skipif(
utils.is_pre_ampere(),
reason="Flash Attention is only supported on Ampere and newer devices.",
)
@pytest.mark.parametrize("qkv_format", [QkvFormat.BHSE, QkvFormat.BSHE])
@pytest.mark.mpi
def test_sdpa_loop_split(multidevice_test, qkv_format: QkvFormat):
d, b, s, h, e = multidevice_test.size, 2, 1024, 12, 768

if h % d != 0:
pytest.skip(f"We only support even split, so {h} has to be divisible by {d}.")
mesh = nvfuser.DeviceMesh(range(d))

class Model(FusionDefinition):
def __init__(self, qkv_format: QkvFormat):
super().__init__()
self._qkv_format = qkv_format

def definition(self) -> None:
match self._qkv_format:
case QkvFormat.BHSE:
stride_order = [3, 2, 1, 0]
case QkvFormat.BSHE:
stride_order = [3, 1, 2, 0]

self.q, self.k, self.v, self.out_grad = [
self.define_tensor(
shape=[b, h, s, e // h],
dtype=DataType.BFloat16,
stride_order=stride_order,
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Is this needed? I believe it'll get overwritten by set_allocation_as_loop so we can simply start with the default stride_order.

)
for _ in range(4)
]

# TODO(#3123): support sharded dropout and change this to a
# positive probability.
dropout_p = self.define_scalar(0.0, dtype=DataType.Double)
is_causal = self.define_scalar(True, dtype=DataType.Bool)
self.attn, self.log_sumexp, seed, offset = self.ops.sdpfa_fwd(
self.q, self.k, self.v, dropout_p, is_causal, scale=None
)

self.q_grad, self.k_grad, self.v_grad = self.ops.sdpfa_bwd(
self.out_grad,
self.q,
self.k,
self.v,
self.attn,
self.log_sumexp,
dropout_p,
is_causal,
seed,
offset,
scale=None,
)

self.add_output(self.attn)
for grad in [self.q_grad, self.k_grad, self.v_grad]:
self.add_output(grad)

def multidevice_schedule(self) -> None:
for t in [
self.q,
self.k,
self.v,
self.attn,
self.log_sumexp,
self.out_grad,
self.q_grad,
self.k_grad,
self.v_grad,
]:
self.sched._set_device_mesh(t, mesh)
self.sched.split(t, 1, d, False)
self.sched.parallelize(t, 1, nvfuser.ParallelType.mesh_x)
if self._qkv_format == QkvFormat.BSHE:
# The loop domain is: {i{B}, i{DIDx}, i{H//D}, i{S}, i{E//H}}
# Reorder i{S} in the allocation domain for BHSE: {i{DIDx}, i{B}, i{S}, i{H//D}, i{E//H}}
self.sched.reorder(t, {2: 3, 3: 2})
self.sched.set_allocation_as_loop(t)

torch.cuda.set_device(multidevice_test.local_rank)

def make_unsharded_tensor() -> torch.Tensor:
return torch.randn(b, h, s, e // h, dtype=torch.bfloat16, device="cpu")

q, k, v = [make_unsharded_tensor().requires_grad_() for _ in range(3)]
out_grad = make_unsharded_tensor()
sharded_q, sharded_k, sharded_v, sharded_out_grad = [
multidevice_test.shard_tensor(t, 1, mesh) for t in [q, k, v, out_grad]
]

with torch.nn.attention.sdpa_kernel(SDPBackend.FLASH_ATTENTION):
expected_out = torch.nn.functional.scaled_dot_product_attention(
q, k, v, dropout_p=0.0, is_causal=True, scale=None
)
expected_out.backward(out_grad)
expected_q_grad, expected_k_grad, expected_v_grad = q.grad, k.grad, v.grad

fd = Model(qkv_format)

def reformat_tensor(t: torch.Tensor) -> torch.Tensor:
match qkv_format:
case QkvFormat.BHSE:
return t
case QkvFormat.BSHE:
return t.transpose(1, 2).contiguous().transpose(1, 2)

attn, q_grad, k_grad, v_grad = fd.execute(
[
reformat_tensor(sharded_q).requires_grad_(),
reformat_tensor(sharded_k).requires_grad_(),
reformat_tensor(sharded_v).requires_grad_(),
reformat_tensor(sharded_out_grad),
]
)

def assert_close(actual, expected):
match qkv_format:
case QkvFormat.BHSE:
assert actual.is_contiguous()
case QkvFormat.BSHE:
assert actual.transpose(1, 2).is_contiguous()

# Use the default rtol for bfloat16 and a relaxed atol.
torch.testing.assert_close(
actual,
multidevice_test.shard_tensor(expected, 1, mesh),
rtol=1.6e-2,
atol=1e-2,
)

for actual, expected in zip(
[attn, q_grad, k_grad, v_grad],
[expected_out, expected_q_grad, expected_k_grad, expected_v_grad],
):
assert_close(actual, expected)


def get_benchmark_fn(func, /, profile: bool):
def wrapper(*args, **kwargs):
if profile:
Expand Down
Loading