pip install balg==0.0.6
Token | Equivalent |
---|---|
& | AND |
^ | XOR |
+ | OR |
~ | NOT |
[A-z] | Variable |
from balg.boolean import Boolean
booleanObject = Boolean()
- To generate an expression's truth table:
input_expression: str = "~(A & B & C)+(A & B)+(B & C)"
tt: str = booleanObject.expr_to_tt(input_expression)
- To generate an expression given the minterms and variables:
variables: List[str] = ['A', 'B', 'C']
minterms: List[int] = [0, 1, 3, 7]
expression: str = booleanObject.tt_to_expr(variables, minterms)
- To generate a logic diagram given an expression:
input_expression: str = "~(A & B & C)+(A & B)+(B & C)"
file_name: str = "logic_diagram12"
format: str = "png"
directory: str = "examples" # stores in the current directory by default
booleanObject.expr_to_dg(input_expression, file_name, directory, format)
- To generate a logic diagram given variables and minterms
variables: List[str] = ['A', 'B', 'C']
minterms: List[int] = [0, 1, 3, 7]
file_name: str = "logic_diagram12"
directory: str = "examples"
format: str = "png"
booleanObject.tt_to_dg(variables, minterms, file_name, directory, format)
- To assert equality for expressions
expressions_list = ["(A & ~B) + (~A & B)", "(A ^ B)", "(A + B) & ~(A & B)"]
ret = booleanObject.expr_cmp(expression_list) # returns True
- To simplify expressions (ambiguous):
simplified_expr: str = booleanObject.expr_simplify("~(A) + ~(B)")
- To generate random expressions:
#generating a single expression
expression: str = boolean.generate_expression(max_depth=4, max_identifiers=5)
#generating multiple expressions
expression: List[str] = boolean.generate_expressions(max_depth=4, max_identifiers=5, count=100)
#max_depth refers to nesting depth:
expression = "A" #nesting_depth = 0
expression = "(((4)))" #nesting_depth = 3
#max_identifiers refers to the number of identifiers allowed in an expression
expression = "A + B + C" # has 3 identifiers
Other diagrams can be found in the diagrams/
directory
This section deals with converting a given truth table to a minimized boolean expression using the Quine-McCluskey algorithm and producing a logic diagram.
- Initialize variables & Minterms
- Identify essential Prime implicants
- Minimize & Synthesize the boolean function
- The synthesizer is initialized with a list of character variables and minterms:
- Minterms refer to values for which the output is 1.
- Prime implicants are found by repeatedly combining minterms that differ by only one variable:
The Quine-McCluskey Algorithm
+-----------------------------------+
| initialize variables and minterms |
| variables := [A, B, C] |
| minterms := [0, 3, 6, 7] |
| minters := [000, 011, 110, 111] |
+-----------------------------------+
|
/
/
|
V
+-----------------------+
| find prime_implicants |
| | A | B | C | out | |
| |---|---|---|------| |
| | 0 | 0 | 0 | 1 | |
| | 0 | 0 | 1 | 0 | |
| | 0 | 1 | 0 | 0 | |
| | 0 | 1 | 1 | 1 | |
| | 1 | 0 | 0 | 0 | |
| | 1 | 0 | 1 | 0 | |
| | 1 | 1 | 0 | 1 | |
| | 1 | 1 | 1 | 1 | |
+-----------------------+
|
|
\
|
V
+----------------------------------+
| | group | minterm | A | B | C | |
| |-------|---------|---|---|---| |
| | 0 | m[0] | 0 | 0 | 0 | |
| | 2 | m[1] | 0 | 1 | 1 | |
| | | m[2] | 1 | 1 | 0 | |
| | 3 | m[3] | 1 | 1 | 1 | |
| |-------|---------|---|---|---| |
+----------------------------------+
\
\
|
V
+-------------------------------------------+
| find pair where only one variable differs |
| | group | minterm | A | B | C | expr |
| |-------|------------|---|---|---|--------|
| | 0 | m[0] | 0 | 0 | 0 | ~(ABC) |
| | 2 | m[1]-m[3] | _ | 1 | 1 | BC |
| | | m[2]-m[3] | 1 | 1 | _ | AB |
+-------------------------------------------+
|
/
|
V
+-------------------------------------------+
| since the bit-diff between pairs in each |
| class is > 1, we move onto the next step |
| |
| | expr | m0 | m1 | m2 | m3 | |
| |--------|-----|-----|-----|------| |
| | ~(ABC) | X | | | | |
| | BC | | X | | | |
| | AB | | | X | | |
| |--------|-----|-----|-----|------| |
+-------------------------------------------+
|
|
/
|
V
+-----------------------------------------+
| If each column contains one element |
| the expression can't be eliminated. |
| Therefore, the resulting expression is: |
| ~(ABC) + BC + AB |
+-----------------------------------------+
- Use parentheses when the order of operations is ambiguous.
- The precedence is as follows, starting from the highest: NOT -> OR -> (AND, XOR)
class TruthTableSynthesizer(variables: List[str], minterms: List[int])
class BooleanExpression(expression: str)
class Boolean()
class BooleanExpressionGenerator(max_identifiers: int = 5, max_depth: int = 5)
TruthTableSynthesizer.decimal_to_binary(num: int) -> str
TruthTableSynthesizer.combine_implicants(implicants: List[Set[str]]) -> Set[str]
TruthTableSynthesizer.get_prime_implicants() -> Set[str]
TruthTableSynthesizer.covers_minterm(implicant: str, minterm: str) -> bool
TruthTableSynthesizer.get_essential_prime_implicants(prime_implicants: Set[str]) -> Set[str]
TruthTableSynthesizer.minimize_function(prime_implicants: Set[str], essential_implicants: Set[str]) -> List[str]
TruthTableSynthesizer.implicant_to_expression(implicant: str) -> str
TruthTableSynthesizer.synthesize() -> str
BooleanExpression.to_postfix(inifx: str) -> List[str]
BooleanExpression.evaluate(values: Dict[str, bool]) -> bool
BooleanExpression.tt() -> List[Tuple[Dict[str, bool], bool]]
BooleanExpression.fmt_tt() -> str
BooleanExpression.generate_logic_diagram() -> graphviz.Digraph
BooleanExpressionGenerator.generate_expression() -> str
BooleanExpressionGenerator.generate_expressions(number: int = 1) -> List[str]
Boolean.expr_to_tt(input_expression: str) -> str
Boolean.tt_to_expr(variables: List[str], minterms: List[int]) -> str
Boolean.tt_to_dg(variables: List[str], minterms: List[int], file: str | None = None, directory: str | None = None, format: str = "png") -> str
Boolean.expr_to_dg(input_expression: str, file: str | None = None, directory: str | None = None, format: str = "png") -> str
Boolean.expr_simplify(input_expression: str) -> str
Boolean.expr_cmp(expressions: List[str]) -> bool
Boolean.generate_expression(max_identifiers: int=5, max_depth: int=4) -> str
Boolean.generate_expressions(max_identifiers: int=5, max_depth: int=4, number: int) -> List[str]
- Optimize functions 0.5. LaTeX interface
- NAND, NOR, XNOR
- Implication (X -> Y) and bi-implication (X <-> Y)
- Add support for constants (1, 0)
- Implement functional completeness testing
Expression comparison by comparing minterms (grammar agnostic)- (improbable) implement Quantum Gates
- (improbable) potential integration with Verilog systems