Skip to content

ModelTC/ComfyUI-Lightx2vWrapper

Repository files navigation

License Python ComfyUI Hugging Face Ask DeepWiki

ComfyUI-Lightx2vWrapper

中文版 | English

A ComfyUI custom node wrapper for LightX2V, enabling modular video generation with advanced optimization features.

Features

  • Modular Configuration System: Separate nodes for each aspect of video generation
  • Text-to-Video (T2V) and Image-to-Video (I2V): Support for both generation modes
  • Advanced Optimizations:
    • TeaCache acceleration (up to 3x speedup)
    • Quantization support (int8, fp8)
    • Memory optimization with CPU offloading
    • Lightweight VAE options
  • LoRA Support: Chain multiple LoRA models for customization
  • Multiple Model Support: wan2.1, hunyuan architectures

Installation

  1. Clone this repository with submodules into your ComfyUI's custom_nodes directory:
cd ComfyUI/custom_nodes
git clone --recursive https://github.com/gaclove/ComfyUI-Lightx2vWrapper.git

If you already cloned without submodules, initialize them:

cd ComfyUI-Lightx2vWrapper
git submodule update --init --recursive
  1. Install dependencies:
cd ComfyUI-Lightx2vWrapper
# Install lightx2v submodule dependencies
pip install -r lightx2v/requirements.txt
# Install ComfyUI wrapper dependencies
pip install -r requirements.txt
  1. Download models and place them in ComfyUI/models/lightx2v/ directory

Node Overview

Configuration Nodes

1. LightX2V Inference Config

Basic inference configuration for video generation.

  • Inputs: model, task_type, inference_steps, seed, cfg_scale, width, height, video_length, fps
  • Output: Base configuration object

2. LightX2V TeaCache

Feature caching acceleration configuration.

  • Inputs: enable, threshold (0.0-1.0), use_ret_steps
  • Output: TeaCache configuration
  • Note: Lower threshold = more speedup (0.1 ~2x, 0.2 ~3x)

3. LightX2V Quantization

Model quantization settings for memory efficiency.

  • Inputs: dit_precision, t5_precision, clip_precision, backend, sensitive_layers_precision
  • Output: Quantization configuration
  • Backends: Auto-detected (vllm, sgl, q8f)

4. LightX2V Memory Optimization

Memory management strategies.

  • Inputs: optimization_level, attention_type, enable_rotary_chunking, cpu_offload, unload_after_generate
  • Output: Memory optimization configuration

5. LightX2V Lightweight VAE

VAE optimization options.

  • Inputs: use_tiny_vae, use_tiling_vae
  • Output: VAE configuration

6. LightX2V LoRA Loader

Load and chain LoRA models.

  • Inputs: lora_name, strength (0.0-2.0), lora_chain (optional)
  • Output: LoRA chain configuration

Combination Node

7. LightX2V Config Combiner

Combines all configuration modules into a single configuration.

  • Inputs: All configuration types (optional)
  • Output: Combined configuration object

Inference Node

8. LightX2V Modular Inference

Main inference node for video generation.

  • Inputs: combined_config, prompt, negative_prompt, image (optional), audio (optional)
  • Outputs: Generated video frames

Usage Examples

Basic T2V Workflow

  1. Create LightX2V Inference Config (task_type: "t2v")
  2. Use LightX2V Config Combiner
  3. Connect to LightX2V Modular Inference with text prompt
  4. Save video output

I2V with Optimizations

  1. Load input image
  2. Create LightX2V Inference Config (task_type: "i2v")
  3. Add LightX2V TeaCache (threshold: 0.26)
  4. Add LightX2V Memory Optimization
  5. Combine configs with LightX2V Config Combiner
  6. Run LightX2V Modular Inference

With LoRA

  1. Create base configuration
  2. Load LoRA with LightX2V LoRA Loader
  3. Chain multiple LoRAs if needed
  4. Combine all configs
  5. Run inference

Model Directory Structure

Download models from: https://huggingface.co/lightx2v

Models should be placed in:

ComfyUI/models/lightx2v/
├── Wan2.1-I2V-14B-720P-xxx/     # Main model checkpoints
├── Wan2.1-I2V-14B-480P-xxx/     # Main model checkpoints
├── loras/          # LoRA models

Tips

  • Start with default settings and adjust based on your hardware
  • Use TeaCache with threshold 0.1-0.2 for significant speedup
  • Enable memory optimization if running on limited VRAM
  • Quantization can reduce memory usage but may affect quality
  • Chain multiple LoRAs for complex style combinations

Troubleshooting

  • Out of Memory: Enable memory optimization or use quantization
  • Slow Generation: Enable TeaCache or reduce inference steps
  • Model Not Found: Check model paths in ComfyUI/models/lightx2v/

Example Workflows

Example workflow JSON files are provided in the examples/ directory:

  • wan_i2v.json - Basic image-to-video
  • wan_i2v_with_distill_lora.json - I2V with distillation LoRA
  • wan_t2v_with_distill_lora.json - T2V with distillation LoRA

Contributing Guidelines

We welcome community contributions! Before submitting code, please ensure you follow these steps:

Install Development Dependencies

pip install ruff pre-commit

Code Quality Check

Before committing code, run the following command:

pre-commit run --all-files

This will automatically check code formatting, syntax errors, and other code quality issues.

Contribution Process

  1. Fork this repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add some amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Create a Pull Request

About

ComfyUI custom node for lightx2v

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •  

Languages