Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 20 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -183,6 +183,10 @@ This repository serves as a comprehensive survey of context engineering techniqu
<a href="https://github.com/Graph-RAG/GraphRAG/" target="_blank">
<img src="https://img.shields.io/github/stars/Graph-RAG/GraphRAG.svg?style=social" alt="GitHub stars">
</a></li>
<li><i><b>The Landscape of Agentic Reinforcement Learning for LLMs: A Survey</b></i>, Zhang et al., <a href="https://arxiv.org/abs/2509.02547" target="_blank"><img src="https://img.shields.io/badge/arXiv-2025.09-red" alt="arXiv Badge"></a>
<a href="https://github.com/xhyumiracle/Awesome-AgenticLLM-RL-Papers" target="_blank">
<img src="https://img.shields.io/github/stars/xhyumiracle/Awesome-AgenticLLM-RL-Papers.svg?style=social" alt="GitHub stars">
</a></li>
</ul>

<b>Benchmarks</b>
Expand Down Expand Up @@ -1552,6 +1556,10 @@ This discipline is foundational for unlocking the full potential of LLMs in prod
</a></li>
<li><i><b>Model Context Protocol (MCP)</b></i>, Anthropic, <a href="https://github.com/modelcontextprotocol" target="_blank"><img src="https://img.shields.io/badge/GitHub-2024-white" alt="GitHub Badge"></a>
</li>
<li><i><b>CoMAS: Co-Evolving Multi-Agent Systems via Interaction Rewards</b></i>, Xue et al., <a href="https://arxiv.org/abs/2510.08529" target="_blank"><img src="https://img.shields.io/badge/arXiv-2025.10-red" alt="arXiv Badge"></a>
</li>
<li><i><b>Achilles Heel of Distributed Multi-Agent Systems</b></i>, Zhang et al., <a href="https://arxiv.org/abs/2504.07461" target="_blank"><img src="https://img.shields.io/badge/arXiv-2025.04-red" alt="arXiv Badge"></a>
</li>
</ul>


Expand Down Expand Up @@ -1668,6 +1676,10 @@ This discipline is foundational for unlocking the full potential of LLMs in prod
</a></li>
<li><i><b>Agent-Pro: Learning to Evolve Coder Agents via Proposal-based Programming</b></i>, Zhang et al., <a href="https://arxiv.org/abs/2402.17574" target="_blank"><img src="https://img.shields.io/badge/arXiv-2024.05-red" alt="arXiv Badge">
</a></li>
<li><i><b>GenoTEX: An LLM Agent Benchmark for Automated Gene Expression Data Analysis</b></i>, Liu et al., <a href="https://arxiv.org/abs/2406.15341" target="_blank"><img src="https://img.shields.io/badge/MLCB-2025.06-blue" alt="MLCB Badge"></a>
<a href="https://github.com/Liu-Hy/GenoTEX" target="_blank">
<img src="https://img.shields.io/github/stars/Liu-Hy/GenoTEX.svg?style=social" alt="GitHub stars">
</a></li>
</ul>


Expand Down Expand Up @@ -1706,6 +1718,14 @@ This discipline is foundational for unlocking the full potential of LLMs in prod
</li>
<li><i><b>Solving Olympiad Geometry without Human Demonstrations</b></i>, Trinh et al., <a href="https://www.nature.com/articles/s41586-023-06747-5" target="_blank"><img src="https://img.shields.io/badge/Nature-2024.01-blue" alt="Nature Badge"></a>
</li>
<li><i><b>GenoMAS: A Multi-Agent Framework for Scientific Discovery via Code-Driven Gene Expression Analysis</b></i>, Liu et al., <a href="https://arxiv.org/abs/2507.21035" target="_blank"><img src="https://img.shields.io/badge/arXiv-2025.07-red" alt="arXiv Badge"></a>
<a href="https://github.com/Liu-Hy/GenoMAS" target="_blank">
<img src="https://img.shields.io/github/stars/Liu-Hy/GenoMAS.svg?style=social" alt="GitHub stars">
</a></li>
<li><i><b>aiXiv: A Next-Generation Open Access Ecosystem for Scientific Discovery Generated by AI Scientists</b></i>, Zhang et al., <a href="https://arxiv.org/abs/2508.15126" target="_blank"><img src="https://img.shields.io/badge/arXiv-2025.08-red" alt="arXiv Badge"></a>
<a href="https://github.com/aixiv-org/aiXiv" target="_blank">
<img src="https://img.shields.io/github/stars/aixiv-org/aiXiv.svg?style=social" alt="GitHub stars">
</a></li>
</ul>

<b>AI for Science Integration and Future Directions</b>
Expand Down