Skip to content

Modified RULER with API scripts for LFMs.

Notifications You must be signed in to change notification settings

Liquid4All/LiquidRULER

Repository files navigation

Evaluating Liquid Models on RULER

Run with Docker

./run-docker.sh \
  --model-url <MODEL_URL> \
  --model-name <MODEL_NAME> \
  --model-api-key <MODEL_API_KEY>

The benchmark results will be stored in the ./benchmark_root directory relative to where you run the Docker command.

Examples

# run against liquid labs
./run-docker.sh \
  --model-url https://inference-1.liquid.ai \
  --model-name lfm-40b \
  --model-api-key <MODEL_API_KEY>

# run on-prem
./run-docker.sh \
  --model-url http://localhost:8000 \
  --model-name lfm-40b \
  --model-api-key <MODEL_API_KEY>

Run locally without Docker

  1. Start with a new conda environment with python=3.11:
conda create -n ruler python=3.11
conda activate ruler
  1. Get the model provider URL and API key.

To run against Liquid labs, get API key here.

  1. Run ./run-local.sh --model-url <MODEL_URL> --model-name <MODEL_NAME> --model-api-key <LIQUID_API_KEY> to install necessary packages and run RULER.

Examples

# run against liquid labs
./run-local.sh \
  --model-url https://inference-1.liquid.ai \
  --model-name lfm-40b \
  --model-api-key <MODEL_API_KEY>

# run on-prem
./run-local.sh \
  --model-url http://localhost:8000 \
  --model-name lfm-40b \
  --model-api-key <MODEL_API_KEY>

The benchmark results will be stored in the ./benchmark_root directory under the project root.

Script parameters

These parameters are available for both the run-docker.sh and run-local.sh scripts.

Parameter Required Description Default
--model-url <SERVER_URL> Yes Inference server URL base.
--model-name <MODEL_NAME> Yes Model ID.
--model-api-key <API_KEY> Yes Inference server API key.
--skip-install No Skip dependency installation. Useful for re-running the script.
--num-samples <N> No Number of samples to run. 100
--ci No Run in CI mode with as few tests as possible.

Troubleshooting

Installation error with GLIBCXX_3.4.20' not found

Run the following command to create a symbolic link to the system's libstdc++.so.6 in the conda environment:

ln -sf /usr/lib/x86_64-linux-gnu/libstdc++.so.6 ${CONDA_PREFIX}/lib/libstdc++.so.6

Acknowledgement

This repository is modified from NVIDIA/RULER.